

Imalsha Dinuwanthi Sewwandie Nanayakkara Vidwa Sripadi Hasini Thilakarathna E/15/081 - <u>e15031@eng.pdn.ac.lk</u> E/15/238 - <u>e15233@eng.pdn.ac.lk</u> E/15/345 - <u>e15345@eng.pdn.ac.lk</u>

E/15/362 - e15362@eng.pdn.ac.lk

Background

• Authors : Kaiming He,

Xiangyu Zhang,

Shaoqing Ren,

Jian Sun

- Published in : IEEE International Conference on Computer Vision (ICCV)
 - Date of conference : 4 13 December 2015
- Conference location : Santiago, Chile

- Parametric Rectifiers
- Initialization of Filter Weights for Rectifiers
- Experiments on ImageNet

Two main stages:

- 1. Propose a Parametric Rectifier Linear Unit (PReLU)
- 2. Derive a robust initialization method that considers the rectifier nonlinearities

Activation Functions

- Determine the output of a NN
- Decides whether a neuron should be activated or not.
- Examples: sigmoid function, tanh function, ReLU

Sewwandie E/15/238

[W(2) * W(1)] = W & [W(2)*b(1) + b(2)] = bFinal output : $z(2) = W^*X + b$

z(2) = [W(2) * W(1)] * X + [W(2)*b(1) + b(2)]

z(2) = (W(2) * [W(1)X + b(1)]) + b(2)

Calculation at Output layer:

Hidden layer i.e. layer 1

z(1) = W(1)X + b(1)

a(1) = z(1)

Activation Functions

Layer 2 i.e. output layer

z(2) = W(2)a(1) + b(2)

a(2) = z(2)

6

Activation Functions

ReLU Sigmoid TanH 1.2 10 1.5 1.0 $\tanh(x) = \frac{2}{1 + e^{-2x}}$ $f(x) = egin{cases} 0 & ext{for} & x < 0 \ x & ext{for} & x \ge 0 \end{cases}$ 1.0 8 $f(x) = \frac{1}{1 + e^{-x}}$ 0.8 6 0.5 0.6 0.0 4 0.4 2 -0.5 0.2 0 -1.0 0.0 -0.2 -6 -2 -6 -1.5 6 -2 2 -2 0 6 2 6 2

1

Sewwandie E/15/238

Generic form of Rectifier Linear Function $f(x_i) = \begin{cases} x_i, & \text{if } x_i > 0 \\ a_i x_i, & \text{if } x_i \le 0 \end{cases}$

ReLU: when $a_i = 0$ $f(x_i) = max(0, x_i)$

PReLU: when a_i is a learnable parameter $f(x_i) = max(0, x_i) + a_i min(0, x_i)$

LReLU: Leaky ReLU, when $a_i = 0$ $f(x_i) = max(0, x_i) + 0.01min(0, x_i)$ Sewwandie E/15/238

8

ReLU Vs PReLU

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the negative part is not constant and is adaptively learned.

Parametric Rectifier Linear Unit (PReLU)

- As a replacement for Rectifier Linear Unit (ReLU)
- Significance:
 - Enables to train extremely deep rectified models directly from scratch
 - Negligible additional computational cost and overfitting risk
 - A 26% relative improvement over the ILSVRC 2014 winner GoogLeNet
 - The first report to surpass the reported human-level performance on this particular dataset.

What is Optimization?

- The term optimize is "to make perfect"
- It is the process of choosing the best inputs which gives the best possible output
- An act, process, or methodology of making something (such as a design, system, or decision) as fully perfect, functional, or effective as possible
 - Ex: Minimal cost, maximal profit, minimal error

What is Optimization in NNs?

- Non-convex optimization
- Optimizers are algorithms for changing attributes of NNs.
 - Examples: Gradient Descent, Stochastic Gradient
 Descent(SGD),SGD with momentum

Optimization

- Trained using backpropagation
- Optimized simultaneously with other layers The gradient of *a_i* for one layer:

$$\frac{\partial \varepsilon}{\partial a_i} = \sum_{y_i} \frac{\partial \varepsilon}{\partial f(y_i)} \frac{\partial f(y_i)}{\partial a_i}$$

 $\partial \varepsilon$: Objective function

 $\frac{\partial \varepsilon}{\partial f(y_i)}$: Gradient propagated from the deeper layer

$$\frac{\partial f(y_i)}{\partial a_i} \quad : \text{Gradient of the activation} = \begin{cases} 0, \ if \ y_i > 0 \\ y_i, \ if \ y_i \le 0 \end{cases}$$

Hasini E/15/362

SGD without momentum

SGD with momentum

Hasini E/15/362

$$\Delta a_i := \mu \Delta a_i + \epsilon \frac{\partial \varepsilon}{\partial a_i}$$

 μ : Momentum

- ϵ : Learning Rate
- Initial a_i : 0.25

- No weight decay!
- Momentum method is used to get a better / faster convergence

Hasini E/15/362

• For the channel-shared variant, the gradient of a_i ,

$$\frac{\partial \varepsilon}{\partial a} = \sum_{i} \sum_{y_i} \frac{\partial \varepsilon}{\partial f(y_i)} \frac{\partial f(y_i)}{\partial a}$$

 \sum_i : sums over all channels of the layer

Comparison Experiments

		learned coefficients		
layer		channel-shared	channel-wise	
conv1	7×7,64, /2	0.681	0.596	
pool1	3×3, /3			
$conv2_1$	2×2, 128	0.103	0.321	
$conv2_2$	2×2, 128	0.099	0.204	
$conv2_3$	2×2, 128	0.228	0.294	
$conv2_4$	2×2, 128	0.561	0.464	
pool2	2×2, /2			
$conv3_1$	2×2, 256	0.126	0.196	
$conv3_2$	2×2, 256	0.089	0.152	
conv33	2×2, 256	0.124	0.145	
conv3 ₄	2×2,256	0.062	0.124	
conv35	2×2, 256	0.008	0.134	
conv3 ₆	2×2, 256	0.210	0.198	
spp	$\{6, 3, 2, 1\}$			
fc1	4096	0.063	0.074	
fc_2	4096	0.031	0.075	

 Comparisons on a deep but efficient model with 14 weight layers

- Comparisons between ReLU, LReLU, and PReLU on the small model for ImageNet 2012
 - 10- view testing
 - Each view is 224×224
 - All models are trained using 75 epochs

C	top-1	top-5
ReLU	33.82	13.34
LReLU ($a = 0.25$)	33.80	13.56
PReLU, channel-shared	32.71	12.87
PReLU, channel-wise	32.64	12.75

Initialization Of Filter Weights For Rectifiers

- A robust initialization method
- Removes an obstacle of training extremely deep rectifier networks
- Allows for extremely deep models
- Xavier initialization
 - Based on the assumption that the activations are linear
 - This assumption is invalid for ReLU and PReLU

Vidwa E/15/345

Forward & Backward Propagation Case

Forward Propagation

Backward Propagation

Investigate the variance of the responses in each layer

For a conv layer, a response is:

$$\mathbf{y}_l = \mathbf{W}_l \mathbf{x}_l + \mathbf{b}_l.$$

The gradient of a conv layer is computed by:

$$\Delta \mathbf{x}_l = \hat{W}_l \Delta \mathbf{y}_l.$$

Variance of the product of independent variables

$$Var[y_L] = Var[y_1] \left(\prod_{l=2}^{L} \frac{1}{2} n_l Var[w_l]\right)$$

$$Var[\Delta x_2] = Var[\Delta x_{L+1}] \left(\prod_{l=2}^{L} \frac{1}{2} \hat{n}_l Var[w_l] \right)$$

Vidwa E/15/345 20

Comparison with Xavier initialization

Convergence of a 22-layer model

Convergence of a 30-layer model

Vidwa E/15/345 21

Architectures and Implementation

input size	VGG-19 [29]	model A	model B	model C
224	$3 \times 3, 64$ $3 \times 3, 64$ $2 \times 2 \text{ pool} /2$	7×7, 96, /2	7×7, 96, /2	7×7, 96, /2
112	$\begin{array}{r} 3 \times 3, 128 \\ 3 \times 3, 128 \\ 3 \times 3, 128 \\ 2 \times 2 \text{ pool}, /2 \end{array}$	2×2 pool, /2	2×2 pool, /2	2×2 pool, /2
56	$3 \times 3, 256$ $3 \times 3, 256$ $3 \times 3, 256$ $3 \times 3, 256$ $3 \times 3, 256$ 2×2 pool /2	$3 \times 3, 256$ $3 \times 3, 256$	$3 \times 3, 256$ $3 \times 3, 256$ 2×2 pool /2	$3 \times 3, 384$ $3 \times 3, 384$ 2×2 pool /2
28	$ \begin{array}{c} 2 \times 2 \text{ pool}, /2 \\ 3 \times 3, 512 \\ 2 \times 2 \text{ pool}, /2 \end{array} $	$\begin{array}{c} 3 \times 3, 512 \\ 2 \times 2 \text{ pool}, /2 \end{array}$	$\begin{array}{c} 3 \times 3, 512 \\ 2 \times 2 \text{ pool}, /2 \end{array}$	$3 \times 3, 768$ $3 \times 3, 768$
14	$ \begin{array}{r} 3 \times 3, 512 \\ 3 \times 3, 512 \end{array} $	$3 \times 3, 512 3 \times 3, 512 $ 3 \times 3, 512 3 \times 3, 512 3 \times 3, 512 3 \times 3, 512 3 \times	$\begin{array}{r} 3 \times 3, 512 \\ 3 \times 3, 512 \end{array}$	$3 \times 3, 896$ $3 \times 3, 896$
for for for	2×2 pool, /2	spp 4096-409	spp	spp
depth	19 1	19	22	22
comp.	1.96	1.90	2.32	5.30

- 19-layer model (A)
- Model A faster running speed
- Model B is a deeper version of A (3 extra layers)
- Model C is a wider (with more filters) version of B

Architectures of large models

- A database with hundreds and thousands of images
- Images are organized in a hierarchy
- Useful for computer vision applications

Accuracy with Top-n Approach

When you have a lot of different classes, the standard accuracy metric might be misleading. Top N accuracies might help in overcoming this issue.

Top-1 accuracy is the conventional accuracy, which means that the model answer (the one with the highest probability) must be exactly the expected answer.

Top-5 accuracy means that *any* of your model that gives 5 highest probability answers that must match the expected answer.

Top-5 error is the percentage of the time that the classifier did not include the correct class among its top 5 guesses

Experiments on ImageNet

Comparisons between ReLU and PReLU

model A	Re	LU	PReLU	
scale s	top-1	top-5	top-1	top-5
256	26.25	8.25	25.81	8.08
384	24.77	7.26	24.20	7.03
480	25.46	7.63	24.83	7.39
multi-scale	24.02	6.51	22.97	6.28

 Comparisons of Single-model Results

	method	top-1	top-5
in	SPP [12]	27.86	9.08†
III II SVPC 14	VGG [29]	-	8.43†
ILSVKC 14	GoogLeNet [33]	-	7.89
	VGG [29] (arXiv v2)	24.8	7.5
	VGG [29] (arXiv v5)	24.4	7.1
post ILSVRC 14	ours (A, ReLU)	24.02	6.51
	ours (A, PReLU)	22.97	6.28
	ours (B, PReLU)	22.85	6.27
	ours (C, PReLU)	21.59	5.71

 Comparisons of Multi-model Results

	method	top-5 (test)
in USVDC 14	SPP [12]	8.06
	VGG [29]	7.32
ILSVKC 14	GoogLeNet [33]	6.66
post	VGG [29] (arXiv v5)	6.8
ILSVRC 14	ours	4.94

Comparison with Human Performance

EST CREATER ALL

 Russakovsky et al. human performance yields a 5.1% top-5 error on the ImageNet dataset.

GT: horse cart 1: horse cart 2: minibus 3: oxcart 4: stretcher 5: half track

GT: yellow lady's slipper 1: yellow lady's slipper 2: slug 3: hen-of-the-woods 4: stinkhorn 5: coral fungus

GT: birdhouse 1: birdhouse 2: sliding door 3: window screen 4: mailbox 5: pot

• Our result - 4.94% exceeds the human level performance.

Examples for successfully classified images

Investigated neural networks driven by the rectifiers:

- First, proposed **PReLU** which adaptively learns the parameters.
- Second, derived a theoretically sound **initialization method**.

On ImageNet 2012 dataset achieves 4.94% top-5 error

- 26% relative improvement over 2014 Winner GoogLeNet(6.66%)
- Surpassess for the first time human-level performance (5.1%)

[1] He, Kaiming & Zhang, Xiangyu & Ren, Shaoqing & Sun, Jian. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. IEEE International Conference on Computer Vision (ICCV 2015). 1502. 10.1109/ICCV.2015.123.

[2] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In International Conference on Artificial Intelligence and Statistics, 2010.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.Going deeper with convolutions.arXiv:1409.4842, 2014.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge.arXiv:1409.0575, 2014.

Thank You!!!

Imalsha E/15/081 30