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Background

Authors: lan J.Goodfellow, Jean-Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

lan J.Goodfellow’s book entitled “Deep Learning” is a very good reading
material to learn about a broad range of topics related to deep learning.

They proposed a new framework to estimate generative models using
an adversarial process.

They trained two models simultaneously.
o Generative model (G)
o Discriminative model (D) .

The framework is relative to a minimax two-player game.
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Mini-Max Two Player Games

e A backtracking algorithm to find the optimal move for a player.
e Used in decision making and game theory

e Used in two player games such as tic-tac-toe, backgammon,
manchala and chess.

e Two players are:
1. Maximizer - Tries to get the highest score possible.
2. Minimizer - Tries to get the lowest score possible.

e Every board state has a value associated with it.
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Key Points

e Models G and D are defined by multilayer perceptrons and the entire system can be trained
with backpropagation.

e No need for any Markov chains or unrolled approximate inference networks during either
training or generating samples.

e The experiments demonstrate the potential of the framework through qualitative and
quantitative evaluation of the generated samples.

e This framework can yield specific training algorithms for many kinds of model and
optimization algorithms.

e G generates samples by passing random noise through a multilayer perceptron and D is also
a multilayer perceptron.
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Related Work

e Recent deep generative models mainly focuses on providing a parametric specification of a
probability distribution function.

e Deep Boltzmann Machine (DBM) is the most successful model among the models which can
be trained by maximizing the log likelihood.

e Generative stochastic networks are an example of generative machine that can be trained with
exact backpropagation rather than the numerous approximations required for Boltzmann
machines.

e Backpropagation of derivatives through generative processes using this observation.
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Related Work

Deep Boltzmann Machines vs Normal Neural Networks

e Contains input layer and hidden layer. e Contains input layer, output layer and
e Unsupervised Deep Learning Model. hidden layers.

® Generative Deep Learning Model. Py Supervised Deep Learning Model.

e Connections are undirected.

Deterministic Deep Learning Model.
Connections are directed.
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Related Work

e Researchers have used stochastic backpropagation to train Variational AutoEncoders (VAESs).

e VAEs vs GANs
o  GANSs require differentiation through the visible units.
o VAEs require differentiation through the hidden units.

e Previous researches also used a discriminative criterion to train a model.

e Noise-Contrastive Estimation (NCE) trains a generative model by learning the weights which
make the model useful for discriminating data from a fixed noise distribution.
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Related Work

e Some of the previous researches has used the competition between two neural networks.
o The most relevant work - Predictability Minimization

e GANSs vs Predictability Minimization
o The competition and the sole training criterion.
o The nature of the competition.
o The specification of the learning process.

e The confusion between GANs and Adversarial Examples
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Classic GAN Framework
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Training Discriminator
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Training Generator
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GAN's Formulation

Equation (1) =>

m(i;n max V(D,G) = Egnpy (@) 108 D()] + E,np, (2)log(1 — D(G(2)))]

e |tis formulated as a minimax game, where:
o  The Discriminator is trying to maximize its reward V(D, G)

o The Generator is trying to minimize Discriminator’s reward
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Theoretical Results
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Theoretical Results

Algorithm |
o  Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to

apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k step to do
e  Sample minibatch of m noise samples {z(1), . . ., z(m)} from noise prior p_(z).
e  Sample minibatch of m examples {x(1), . . ., x(m)} from data generating dgfstribution P gataX)-
e Update the discriminator by ascending its stochastic gradient:

T e (=) 10 (0 ()

end for
e  Sample minibatch of m noise samples {z(1), . . ., z(m)} from noise prior pg(z).
e Update the generator by descending its stochastic gradient:
end for

w0, $ov(1-0(0(=)))
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Theoretical Results

e  Global Optimality of p_ = p,,,

o  Considering the optimal discriminator D for any given generator G.
o  Proposition 1 => For G fixed, the optimal discriminator

* pdata(w)
Equation 2) => Dga(x) =
quation (2) G( ) pdata(w) _|_pg(m)

o  Proof
o  The training criterion for the discriminator D, given any generator G, is to maximize the

quantity V (G, D)

V(G,D) = / Pawa() log(D(@))dex + / p=(2)log(1 — D(g(2)))dz

Equation (3) =>
— / Pdata(x) log(D(x)) + pg(x) log(l — D(x))dz

e Forany (a, b) € RxR\{0, 0}, the function y — a log(y) + b log(1 — y) achieves its maximum in [0, 1] at (a/ a+b)
The discriminator does not need to be defined outside of Supp(p,,.) U Supp(pg). End of proof.
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Theoretical Results

e The training objective for D can be interpreted as maximizing the log-likelihood for estimating the conditional probability

P(Y = y|x), where Y indicates whether x comes from p,_.. (with y = 1) or from P, (with y = 0). The minimax game in earlier

equation can be reformulated as:
Equation (4)=> C(G) = max V(G, D)

=Eanpia 108 DG(2)] + Eznp, [log(1 — DE(G(2)))]
=Eorpi 108 DG ()] + Eanp, [log(1 — Dg(x))]

Pdata(T) ] [ Pg (x)
:EwN n lo -+ ]E;c,\, lo
Pd & Pdata(-’B) - Pg (a?) e 5 pdata(m) + pg(w)

. P1 1 P2
JS Dlvergence formula => JS(P1||P2) = zE..p;In (m) EA ~P2 (m)

e Theorem 1 => The global minimum of the virtual training criterion C(G) is achieved if and only if
Py = Pyatar At that point, C(G) achieves the value - log 4.
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Theoretical Results

e Proof of Theorem 1:
e Forp, =p. D (x) = (V2), (consider Equation (2) ). Hence, by inspecting Equation (4) at D*G(x) = (%2), we

find &(G) = Iog(1/2 ) + log(2) = — log 4. To see that this is the best possible value of C(G), reached only for
Py = Pyatar observe that

Emdiata [_ ]‘Og 2] + EmNpg [_ ]-Og 2] - — ].Og 4
e and that by subtracting this expression from C(G) =V (D*G, G), we obtain:

Equation (5) => C(G) = —log(4) + KL (p 1%) +KL (pg

e where KL is the Kullback—Leibler divergence. We recognize in the previous expression the
Jensen—Shannon divergence between the model’s distribution and the data generating process:

Pdata T Dg
2

Equation (6) => C(G) = —log(4) + 2 - JSD (pata ||Pg )
e Since the Jensen—Shannon divergence between two distributions is always non-negative, and zero iff they are

equal, we have shown that C* = - log(4) is the global minimum of C(G) and that the only solution is Py = Pyatar
that is the generative model perfectly replicating the data distribution.
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Theoretical Results

Convergence of Algorithm |

@)

Proposition 2 => If G and D have enough capacity, and at each step of Algorithm 1, the discriminator is allowed
to reach its optimum given G, and P, is updated so as to improve the criterion

Enp[10g D ()] + Enp, [log(1 — D ()]

then p, converges to Pyata

Proof =>

Consider V (G, D) = U(pg, D) as a function of pg as done in the above criterion. Note that U(pg, D) is convex in
Py- The sub derivatives of a supremum of convex functions include the derivative of the function at the point
where the maximum is attained. In other words, if f(x) = sup__,f,(x) and f_(x) is convex in x for every a, then afB
(x) € of if B = arg sup__, f (x). This is equivalent to computing a gradient descent update for Py at the optimal D
given the corresponding G. sup, U(pg, D) is convex in Py with a unique global optima as proven in Theorem

1,therefore with sufficiently small updates of P, P, CONverges to p,. End of proof.
E/15/348 Suhail 20



Experiments

They trained adversarial nets an a range of datasets including MNIST, the Toronto Face Database (TFD) and
CIFAR-10.

The generator nets used a mixture of rectifier linear activations and sigmoid activations, while the discriminator net
used maxout activations.

Dropout was applied in training the discriminator net. While our theoretical framework permits the use of dropout and
other noise at intermediate layers of the generator.

They used noise as the input to only the bottommost layer of the generator network.
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Experiments

e They estimate probability of the test set data under p_ by fitting a Gaussian Parzen window to the samples
generated with G and reporting the log-likelihood undqer this distribution.

e The o parameter of the Gaussians was obtained by cross validation on the validation set.

e The following table shows Parzen window-based log-likelihood estimates.

Model MNIST TFD
DBN [3] 13842 1909 + 66
Stacked CAE[3] | 121 +1.6 | 2110 £+ 50
Deep GSN [5] 214+ 1.1 | 1890 £ 29
Adversarial nets 225+ 2 | 2057 &+ 26
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Samples drawn from the generator net after training

LT
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Samples drawn from the generator net after training

Nearest neighbor from training set
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Advantages and Disadvantages

e The new framework comes with advantages and disadvantages relative to previous modeling frameworks.

e Disadvantages:
o  There is no explicit representation of pg(x).

o D must be synchronized well with G during training.
o  The negative chains of a Boltzmann machine must be kept up to date between learning
steps.

e Computational Advantages:
o  Markov chains are never needed.

o  Only backprop is used to obtain gradients.
o No inference is needed during learning.
o  Awide variety of functions can be incorporated into the model.
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Comparative Analysis

e This table shows the comparison between
GAN and the other modelling approaches.

e Training, Inference, Sampling, Evaluating
p(x) and the design model are the main
criteria used in this comparative analysis.

e It mainly describes the difficulties
encountered by different deep generative
modelling approaches for every operation
involving a model.

Deep directed Deep undirected Generative Adversarial models
graphical models graphical models autoencoders
Inference needed Enforced tradeoff

during training.

between mixing

Synchronizing the

.. Inference needed MCMC needed to discriminator with
Training . s o . and power of
during training. approximate reEos R the generator.
partition function e Helvetica.
. generation
gradient.
Learnefi Variational MCMC-based Learne_d
Inference approximate ; : approximate
. inference inference :
inference inference
Sampling | No difficulties Requires Markov | Requires Markov | o gifficylties
chain chain
Not explicitly Not explicitly
Intractable, may be | Intractable, may be | represented, may be | represented, may be
Evaluating p(z) | approximated with approximated with approximated with approximated with
AIS AIS Parzen density Parzen density
estimation estimation
Models need to be
designed to work
with the desired Carchi diag Any differentiable Any differentiable
. inference scheme arefu’ cesign function is function is
Model design A needed to ensure ; A
— some inference multiple properties theoretically theoretically
schemes support RAEISE permitted permitted

similar model
families as GANs
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Conclusions and Future Work

e This framework admits many straightforward extensions =>

e A conditional generative model p(x | ¢) can be obtained by adding c as input to both G
and D.

e Learned approximate inference can be performed by training an auxiliary network to
predict z given x.

e  One can approximately model all conditionals p(xg | ;) where S is a subset of the
indices of x by training a family of conditional models that share parameters.

e Semi-supervised learning.

e Efficiency improvements.
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