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Introduction to GANs
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Architecture of GANs
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Background

● Authors: Ian J.Goodfellow, Jean-Pouget-Abadie, Mehdi Mirza, Bing Xu, 
David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio 

● Ian J.Goodfellow’s book entitled “Deep Learning” is a very good reading 
material to learn about a broad range of topics related to deep learning.

● They proposed a new framework to estimate generative models using 
an adversarial process.

● They trained two models simultaneously.
○ Generative model (G) 
○ Discriminative model (D) .

● The framework is relative to a minimax two-player game.
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Mini-Max Two Player Games

● A backtracking algorithm to find the optimal move for a player.

● Used in decision making and game theory

● Used in two player games such as tic-tac-toe, backgammon, 
manchala and chess.

● Two players are:
1.  Maximizer - Tries to get the highest score possible.
2.  Minimizer -  Tries to get the lowest score possible.

● Every board state has a value associated with it.
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Key Points

● Models G and D are defined by multilayer perceptrons and the entire system can be trained 
with backpropagation.

● No need for any Markov chains or unrolled approximate inference networks during either 
training or generating samples.

● The experiments demonstrate the potential of the framework through qualitative and 
quantitative evaluation of the generated samples.

● This framework can yield specific training algorithms for many kinds of model and 
optimization algorithms. 

● G generates samples by passing random noise through a multilayer perceptron and D is also 
a multilayer perceptron.
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● Recent deep generative models mainly focuses on providing a parametric specification of a 
probability distribution function.

● Deep Boltzmann Machine (DBM) is the most successful model among the models which can 
be trained by maximizing the log likelihood. 

● Generative stochastic networks are an example of generative machine that can be trained with 
exact backpropagation rather than the numerous approximations required for Boltzmann 
machines.

● Backpropagation of derivatives through generative processes using this observation.
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      Deep Boltzmann Machines       vs      Normal Neural Networks

● Contains input layer and hidden layer.
● Unsupervised Deep Learning Model.
● Generative Deep Learning Model.
● Connections are undirected.

● Contains input layer, output layer and 
hidden layers.

● Supervised Deep Learning Model.
● Deterministic Deep Learning Model.
● Connections are directed.

Related Work
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Related Work

● Researchers have used stochastic backpropagation to train Variational AutoEncoders (VAEs).

● VAEs vs GANs
○ GANs require differentiation through the visible units.
○ VAEs require differentiation through the hidden units.

● Previous researches also used a discriminative criterion to train a model.

● Noise-Contrastive Estimation (NCE) trains a generative model by learning the weights which 
make the model useful for discriminating data from a fixed noise distribution.
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Related Work

● Some of the previous researches has used the competition between two neural networks.
○ The most relevant work - Predictability Minimization

● GANs vs Predictability Minimization
○ The competition and the sole training criterion.
○ The nature of the competition.
○ The specification of the learning process. 

● The confusion between GANs  and Adversarial Examples
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Classic GAN Framework
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Training Discriminator
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Training Generator
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GAN’s Formulation

  Equation (1) =>
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● It is formulated as a minimax game, where:

○ The Discriminator is trying to maximize its reward V(D, G)

○ The Generator is trying to minimize Discriminator’s reward
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Theoretical Results

Discriminative Distribution - Blue dashed line
Generative Distribution (Pg) - Green solid line
Data Generating Distribution (Pdata) - Black dotted line
Global optimum reached in (d) where Pg = Pdata  E/15/351 Thakshajini 
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Theoretical Results

● Algorithm I
○ Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to 

apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our 
experiments.

● for number of training iterations do 
for k step to do

● Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
● Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distribution pdata(x).
● Update the discriminator by ascending its stochastic gradient:

end for
● Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
● Update the generator by descending its stochastic gradient:

● end for
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Theoretical Results

● Global Optimality of pg = pdata

○ Considering the optimal discriminator D for any given generator G.
○ Proposition 1 => For G fixed, the optimal discriminator

              Equation (2) =>

○ Proof
○ The training criterion for the discriminator D, given any generator G, is to maximize the

quantity V (G, D)

                                                        Equation (3) =>

● For any (a, b) ∈ RxR\ {0, 0}, the function y → a log(y) + b log(1 − y) achieves its maximum in [0, 1] at  (a/ a+b) 
The discriminator does not need to be defined outside of Supp(pdata) ∪ Supp(pg). End of proof.
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Theoretical Results

● The training objective for D can be interpreted as maximizing the log-likelihood for estimating the conditional probability 
P(Y = y|x), where Y indicates whether x comes from pdata (with y = 1) or from pg (with y = 0). The minimax game in earlier 
equation can be reformulated as:

                          Equation (4) =>

JS Divergence formula =>

● Theorem 1 => The global minimum of the virtual training criterion C(G) is achieved if and only if
pg = pdata. At that point, C(G) achieves the value − log 4.
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Theoretical Results

● Proof of Theorem 1:
● For pg = pdata, D

*
G(x) = (½), (consider Equation (2) ). Hence, by inspecting Equation (4) at D*

G(x) = (½),  we 
find  C(G) = log(½) + log(½) = − log 4. To see that this is the best possible value of C(G), reached only for 
pg = pdata, observe that

● and that by subtracting this expression from C(G) = V (D*
G, G), we obtain:

  Equation (5) =>

● where KL is the Kullback–Leibler divergence. We recognize in the previous expression the 
Jensen–Shannon divergence between the model’s distribution and the data generating process:

  Equation (6) =>

● Since the Jensen–Shannon divergence between two distributions is always non-negative, and zero iff they are 
equal, we have shown that C∗ = − log(4) is the global minimum of C(G) and that the only solution is pg = pdata, 
that is the generative model perfectly replicating the data distribution.
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Theoretical Results

● Convergence of Algorithm I

○ Proposition 2 => If G and D have enough capacity, and at each step of Algorithm 1, the discriminator is allowed 
to reach its optimum given G, and pg is updated so as to improve the criterion

○ then pg converges to pdata

○ Proof =>

○ Consider V (G, D) = U(pg, D) as a function of pg as done in the above criterion. Note that U(pg, D) is convex in 
pg. The sub derivatives of a supremum of convex functions include the derivative of the function at the point 
where the maximum is attained. In other words, if f(x) = supα∈A fα(x) and fα(x) is convex in x for every α, then ∂fβ
(x) ∈ ∂f if β = arg supα∈A fα(x). This is equivalent to computing a gradient descent update for pg at the optimal D 
given the corresponding G. supD U(pg, D) is convex in pg with a unique global optima as proven in Theorem 
1,therefore with sufficiently small updates of pg, pg converges to px. End of proof.
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Experiments

● They trained adversarial nets an a range of datasets including MNIST, the Toronto Face Database (TFD) and 
CIFAR-10. 

● The generator nets used a mixture of rectifier linear activations and sigmoid activations, while the discriminator net 
used maxout activations. 

● Dropout was applied in training the discriminator net. While our theoretical framework permits the use of dropout and 
other noise at intermediate layers of the generator.

●  They used noise as the input to only the bottommost layer of the generator network.
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Experiments

● They estimate probability of the test set data under pg by fitting a Gaussian Parzen window to the samples 
generated with G and reporting the log-likelihood under this distribution. 

● The σ parameter of the Gaussians was obtained by cross validation on the validation set. 

● The following table shows Parzen window-based log-likelihood estimates.
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Samples drawn from the generator net after training

Nearest neighbor from training set
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Samples drawn from the generator net after training

Nearest neighbor from training set
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Advantages and Disadvantages

● The new framework comes with advantages and disadvantages relative to previous modeling frameworks.

● Disadvantages:
○ There is no explicit representation of pg(x).
○ D must be synchronized well with G during training.
○ The negative chains of a Boltzmann machine must be kept up to date between learning 

steps.

● Computational Advantages:
○ Markov chains are never needed.
○ Only backprop is used to obtain gradients.
○ No inference is needed during learning.
○ A wide variety of functions can be incorporated into the model.
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Comparative Analysis

● This table shows the comparison between 
GAN and the other modelling approaches.

● Training, Inference, Sampling, Evaluating 
p(x) and the design model are the main 
criteria used in this comparative analysis.

● It mainly describes the difficulties 
encountered by different deep generative 
modelling approaches for every operation 
involving a model.
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Conclusions and Future Work

● This framework admits many straightforward extensions =>

● A conditional generative model p(x | c) can be obtained by adding c as input to both G 
and D.

● Learned approximate inference can be performed by training an auxiliary network to 
predict z given x. 

● One can approximately model all conditionals p(xS | x$) where S is a subset of the 
indices of x by training a family of conditional models that share parameters. 

● Semi-supervised learning.

● Efficiency improvements.
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QUESTIONS?


