
COMPRESSION OF DEEP CONVOLUTIONAL
NEURAL NETWORKS

FOR FAST AND LOW POWER MOBILE
APPLICATIONS

Group 09
E/15/065 - DE SILVA K.G.P.M. - e15065@eng.pdn.ac.lk
E/15/119 - HASANIKA D.L.D. - e15119@eng.pdn.ac.lk
E/15/202 - LIYANAGE D.P. - e15202@eng.pdn.ac.lk
E/15/208 - MADHUSHANEE G.G.R.D. - rosh.madhu@eng.pdn.ac.lk

1

mailto:e15065@eng.pdn.ac.lk
mailto:e15119@eng.pdn.ac.lk
mailto:e15202@eng.pdn.ac.lk
mailto:rosh.madhu@eng.pdn.ac.lk

Background

Authors : Yong-Deok Kim Published : a conference paper at ICLR
 Eunhyeok Park 2016
 Sungjoo Yoo
 Taelim Choi
 Lu Yang
 Dongjun Shin

2E/15/119 - Dinithi

Introduction

3E/15/119 - Dinithi

Mobile applications of CNNs

● Mobile devices use CPU and GPU, running deeper CNNs for complex tasks
Ex: ImageNet classification

● Issues - Mobile devices have strict constraints in computing power,
battery, and memory capacity

● Improve test-time performance - Compressions on convolution layers
without noticeable impact on accuracy

4E/15/119 - Dinithi

Whole network compression
● Existing methods effective in reducing the computation cost of a single

convolutional layer
● Aims at compressing the entire network
● Reduce the computational cost
● Nontrivial to compress whole and very deep CNNs for complex tasks such as

ImageNet classification
● Methods used Earlier - Asymmetric (3d) decomposition (Zhang et al. (2015b)
● This paper presents simple, powerful whole network compression

5E/15/119 - Dinithi

Contribution

6E/15/119 - Dinithi

● One-shot whole network compression consists of 3 steps
○ Rank selection
○ Low-rank tensor decomposition
○ Fine-tuning

● Can be easily implemented using publicly available tools
● Evaluate various compressed CNNs on both Titan X and smartphone

○ AlexNet

○ VGG-S

○ GoogLeNet

○ VGG-16

● Significant reduction in model size, runtime, and energy consumption are obtained, at

the cost of small loss in accuracy

● Analyse power consumption over time and observe behaviours of 1 × 1 convolution

7E/15/119 - Dinithi

Related Work

8E/15/119 - Dinithi

1. CNN Compression

● Singular value decomposition(SVD) (Denton et al., 2014)
○ The weight matrix of a fully-connected layer can be compressed by applying

truncated SVD without significant drop in the prediction accuracy

● Vector quantization (Gong et al., 2014), Hashing techniques (Chen et al., 2015),
Circulant projection (Cheng et al., 2015), Tensor train decomposition (Novikov et
al., 2015)

○ Better compression capability than SVD

● Low-rank decomposition of convolutional kernel tensor (Denton et al., 2014;
Jaderberg et al.,2014; Lebedev et al., 2015)

○ Speed up the convolutional layers
○ Compress only single or a few layers

9E/15/119 - Dinithi

● Asymmetric (3d) decomposition (Zhang et al. (2015b))
○ To accelerate the entire convolutional layers, the original D × D convolution is decomposed to

D × 1, 1 × D, and 1 × 1 convolution
○ Present a rank selection method based on PCA accumulated energy
○ Present an optimization method which minimizes the reconstruction error of non-linear

responses

● Pruning approach (Han et al., 2015b;a)
○ Reduce the total amount of parameters and operations in the entire network

● Implementation level approaches
○ FFT method was used to speed-up convolution (Mathieu et al., 2013)
○ In (Vanhoucke et al., 2011), CPU code optimizations to speed-up the execution of CNN

10E/15/119 - Dinithi

2. Tensor Decomposition
● Tensor - multiway array of data

Example: Vector - 1 way tensor
 Matrix - 2 way tensor

● Two of the most popular tensor decomposition models
1. CANDECOMP/PARAFAC model (Carroll & Chang, 1970; Harshman & Lundy, 1994;

Shashua & Hazan, 2005)
2. Tucker model (Tucker, 1966; De Lathauwer et al., 2000; Kim & Choi, 2007)

● In the paper - Tucker model for whole network compression

● Tucker-2 decomposition (GLRAM)
○ from the second convolutional layer to the first fully connected layer

● Tucker-1 decomposition
○ Other layers
○ Equivalent to SVD

11E/15/208 - Roshani

● Tucker decomposition
○ A higher order extension of the singular value decomposition (SVD) of matrix
○ Perspective: computing the orthonormal spaces associated with the different modes of a tensor
○ Analyzes mode-n matricizations of the original tensor
○ Merges them with core tensor

12E/15/208 - Roshani

Difference of this paper compared to above related works

● Tucker decomposition is adopted to compress the entire convolutional and
fully-connected layers

● The kernel tensor reconstruction error is minimized instead of non-linear
response

● A global analytic solution of VBMF (Nakajima et al., 2012) is applied to
determine the rank of each layer

● A single run of fine-tuning is performed to account for the accumulation of
errors.

13E/15/208 - Roshani

Proposed Method

14E/15/208 - Roshani

One-shot whole network compression scheme

● Three steps
1) Rank Selection

○ Analyze principal subspace of mode-3 and mode-4 matricization of each layer’s kernel
tensor with global analytic variational Bayesian matrix factorization

2) Tucker decomposition
3) Fine-tuning

○ Standard back-propagation

15E/15/208 - Roshani

Tucker Decomposition on Kernel Tensor

Convolution kernel tensor

● input (source) tensor X - size H x W x S
● output (target) tensor Y - size H’ x W’ x S

16

➔ K = 4-way kernel tensor of size D x D x S x T
➔ Δ = stride
➔ P = zero-padding size

(1)

E/15/208 - Roshani

Tucker Decomposition

● K = The rank-(R1;R2;R3;R4) Tucker decomposition of 4-way kernel tensor

➔ C’ = core tensor of size R1 x R2 x R3 x R4
➔ U(1), U(2), U(3), U(4) = factor matrices - sizes D x R1, D x R2, S x R3, and T x R4

● Under Tucker-2 decomposition, the kernel tensor is decomposed to:

➔ C = a core tensor of size D x D x R3 x R4

17

(2)

E/15/208 - Roshani

● After substituting, performing rearrangements and grouping summands:

18

➔ Z and Z’ are intermediate tensors of sizes H x W x R3 and H’ x W’ x R4

(3)

(4)

(5)

E/15/208 - Roshani

19

1 x 1 convolution
● Computing Z from X in (3) and Y from Z’ in (5)
● perform pixel-wise linear re-combination of input maps
● Introduced in network-in-network
● Extensively used in inception module of GoogLeNet

Tucker-2 decompositions
for speeding-up a convolution

➔ Each transparent box = 3-way tensor X, Z, Z’, Y
➔ Two frontal sides = spatial dimensions
➔ Arrows = linear mappings - illustrate how scalar values on the right are computed
➔ Yellow tube, red-box, and blue tube = 1 x 1, D x D, and 1 x 1 convolution in (3), (4), and (5)

E/15/208 - Roshani

Tucker vs CP

● CP decomposition
○ Applied to approximate the convolution layers of CNNs for ImageNet which consist of 8

layers
○ Cannot be applied to the entire layers
○ Instability issue of low-rank CP decomposition

● Kernel tensor approximation with Tucker decomposition
○ Can be successfully applied to the entire layers of AlexNet, VGG-S, GoogLeNet, and

VGG-16
20

Complexity analysis

➔ M = Compression ratio
➔ E = Speed-up ratio

● Bounded by ST=R3R4

E/15/208 - Roshani

Rank of a CNN

● Key parameter that determines the complexity of each layer

● Directly related to,
○ Memory usage
○ Runtime
○ Energy consumption
○ Accuracy

21E/15/202 - Dulanjali

Rank Selection with Global Analytic VBMF

● VBMF - Variational Bayesian Matrix Factorization
○ Available as a MATLAB function
○ Find the rank of matrix instead of tensor
○ Therefore tensors converted to matrices - process is called matricization

● VBMF applied on,
○ Mode 3 matricization - size is S X TD2

○ Mode 4 matricization - size is T X D2S

● VBMF determined rank R3 and R4

22E/15/202 - Dulanjali

Mode 3 matricization

23

Mode 4 matricization

S

T

D2

T

D2

S

T

S

D2

D2

T

S

E/15/202 - Dulanjali

Example of rank selection using VBMF on a CNN

24

Convolutional Layer 1

Convolutional Layer 2

Convolutional Layer 3

Convolutional Layer 4

Convolutional Layer 5

R2R1 R3 R4

R2R1 R3 R4

R2R1 R3 R4

R2R1 R3 R4

R2R1 R3 R4

R1 - Rank of mode 1 matricization
R2 - Rank of mode 2 matricization
R3 - Rank of mode 3 matricization
R4 - Rank of mode 4 matricization

E/15/202 - Dulanjali

What is Reconstruction Error ?

● The distance between original
data point and it’s projection
onto a lower dimensional
subspace

● Red points - original data
points

● Blue points - projected points

25E/15/202 - Dulanjali

Fine Tuning

● Reconstruction error of linear kernel tensors were minimized
○ Therefore accuracy dropped
○ For example AlexNet dropped more than 50%

● Method of fine tuning ?
○ Standard back propagation

● Accuracy was recovered by using fine-tuning with ImageNet training
dataset
○ 1 epoch - recover accuracy quickly
○ More than 10 epochs - recover original accuracy

26E/15/202 - Dulanjali

Accuracy of compressed CNNs in fine-tuning

27

● Base learning η = 10-3

E/15/202 - Dulanjali

Experiments

28

1. Overall Results for ImageNet 2012 dataset

29

● Original Vs. Compressed
CNN

● * compression

● Tested on
○ Smartphones

■ S6: Samsung
Galaxy S6

○ Nvidia Titan X

● FLOPs - Floating point
operations per second

● Weights - weights between
input and hidden layer in NN

Runtime EnergyAccuracy

2. Layerwise Analysis

Each row has two results

● Original uncompressed CNN
● Compressed CNN

30

Observations

● The smartphone tends to give larger performance gain than the Titan X
○ Mobile phone GPUs lacks in thread-level parallelism.

■ 24 times less number of threads than Titan X
○ Reduces the amount of weights by reducing cache conflicts and memory latency.

● Mobile phones shows larger performance in FC layers than Conv layers
○ Reduced cache conflicts enabled by network compression
○ The weights at the fully-connected layers are utilized only once (DoA)
○ DoA data are more harmful than Conv kernel weights

31

3. Energy Consumption Analysis

Compression reduces

● Power consumption
● Runtime

32

Cond...

● The reduction in energy consumption is larger than that in runtime

● Power consumption of compressed CNN is smaller than uncompressed CNN

○ Due to the extensive usage of 1 × 1 convolutions in the compressed CNN

● For executing convolutions they applied optimization techniques such as Caffeinated

convolution

● In cache efficiency, 1 × 1 convolutions are inferior to the other convolutions (3×3, 5×5 etc)

○ 1 × 1 convolutions tend to incur more cache misses

● However, 1 × 1 convolutions have negative impacts on cache efficiency and GPU core

utilization

33

In the uncompressed networks,

● AlexNet and VGG-S - the power consumption of GPU core tends to be stable
● GoogLeNet - the power consumption tends to fluctuate.
● In fully connected layers incur significant amount of power consumption in main memory

In the compressed networks,

● The power consumption of GPU core tends to change more frequently
● Reduces the amount of weights at fully connected layers

34

Discussion

35

● One-shot rank selection
○ Very promising results
○ Not fully investigated yet whether the selected rank is really optimal/not
○ Future work: Investigate optimality of the proposed scheme

● 1 x 1 convolution
○ Key operation in compressed model and in inception module of GoogLeNet
○ Lacks in cache efficiency
○ Future work: investigating to make best use of 1x1 convolutions

● Whole network compression
○ Large design space and associated long design time
○ Propose: a one-shot compression scheme (applies a single general low-rank approximation method

and a global rank selection method)

● Oneshot compression
○ Fast design, easy implementation with publicly available tools

● Effectiveness evaluation - smartphone and Titan X
○ improvements in runtime (energy consumption) on the smartphone for 4 CNNs(AlexNet, VGG-S,

GoogLeNet, and VGG- 16)

36

THANK YOU !

37

Q & A

38

