## COMPRESSION OF DEEP CONVOLUTIONAL NEURAL NETWORKS FOR FAST AND LOW POWER MOBILE APPLICATIONS

Group 09

- E/15/065 DE SILVA K.G.P.M. e15065@eng.pdn.ac.lk
- E/15/119 HASANIKA D.L.D. e15119@eng.pdn.ac.lk
- E/15/202 LIYANAGE D.P. e15202@eng.pdn.ac.lk
- E/15/208 MADHUSHANEE G.G.R.D. rosh.madhu@eng.pdn.ac.lk

#### Background

Authors : Yong-Deok Kim Eunhyeok Park Sungjoo Yoo Taelim Choi Lu Yang Dongjun Shin Published : a conference paper at ICLR 2016

# Introduction

#### Mobile applications of CNNs

• Mobile devices use CPU and GPU, running deeper CNNs for complex tasks Ex: ImageNet classification

 Issues - Mobile devices have strict constraints in computing power, battery, and memory capacity

• Improve test-time performance - **Compressions on convolution layers** without noticeable impact on accuracy

#### Whole network compression

- Existing methods effective in reducing the computation cost of a single convolutional layer
- Aims at compressing the entire network
- Reduce the computational cost
- Nontrivial to compress whole and very deep CNNs for complex tasks such as ImageNet classification
- Methods used Earlier Asymmetric (3d) decomposition (Zhang et al. (2015b)
- This paper presents simple, powerful whole network compression

# Contribution

#### • One-shot whole network compression consists of 3 steps

- Rank selection
- Low-rank tensor decomposition
- Fine-tuning
- Can be easily implemented using publicly available tools
- Evaluate various compressed CNNs on both Titan X and smartphone
  - AlexNet
  - VGG-S
  - GoogLeNet
  - VGG-16
- Significant reduction in model size, runtime, and energy consumption are obtained, at the cost of small loss in accuracy
- Analyse power consumption over time and observe behaviours of 1 × 1 convolution

## **Related Work**

## 1. CNN Compression

- **Singular value decomposition(SVD)** (Denton et al., 2014)
  - The weight matrix of a fully-connected layer can be compressed by applying truncated SVD without significant drop in the prediction accuracy
- Vector quantization (Gong et al., 2014), Hashing techniques (Chen et al., 2015), Circulant projection (Cheng et al., 2015), Tensor train decomposition (Novikov et al., 2015)
  - Better compression capability than SVD
- Low-rank decomposition of convolutional kernel tensor (Denton et al., 2014; Jaderberg et al., 2014; Lebedev et al., 2015)
  - Speed up the convolutional layers
  - Compress only single or a few layers

- Asymmetric (3d) decomposition (Zhang et al. (2015b))
  - To accelerate the entire convolutional layers, the original D × D convolution is decomposed to D × 1, 1 × D, and 1 × 1 convolution
  - Present a rank selection method based on PCA accumulated energy
  - Present an optimization method which minimizes the reconstruction error of non-linear responses
- **Pruning approach** (Han et al., 2015b;a)
  - Reduce the total amount of parameters and operations in the entire network
- Implementation level approaches
  - **FFT method** was used to speed-up convolution (Mathieu et al., 2013)
  - In (Vanhoucke et al., 2011), CPU code optimizations to speed-up the execution of CNN

## 2. Tensor Decomposition

 Tensor - multiway array of data Example: Vector - 1 way tensor Matrix - 2 way tensor



- Two of the most popular tensor decomposition models
  - 1. CANDECOMP/PARAFAC model (Carroll & Chang, 1970; Harshman & Lundy, 1994; Shashua & Hazan, 2005)
  - 2. Tucker model (Tucker, 1966; De Lathauwer et al., 2000; Kim & Choi, 2007)
- In the paper Tucker model for whole network compression
- Tucker-2 decomposition (GLRAM)
  - from the second convolutional layer to the first fully connected layer
- Tucker-1 decomposition
  - Other layers
  - Equivalent to SVD

- Tucker decomposition
  - A higher order extension of the singular value decomposition (SVD) of matrix
  - Perspective: computing the orthonormal spaces associated with the different modes of a tensor
  - Analyzes mode-n matricizations of the original tensor
  - Merges them with core tensor



## Difference of this paper compared to above related works

- Tucker decomposition is adopted to compress the entire convolutional and fully-connected layers
- The kernel tensor reconstruction error is minimized instead of non-linear response
- A global analytic solution of VBMF (Nakajima et al., 2012) is applied to determine the rank of each layer
- A single run of fine-tuning is performed to account for the accumulation of errors.

## **Proposed Method**

#### One-shot whole network compression scheme

- Three steps
  - 1) Rank Selection
    - Analyze principal subspace of mode-3 and mode-4 matricization of each layer's kernel tensor with global analytic variational Bayesian matrix factorization
  - 2) Tucker decomposition
  - 3) Fine-tuning
    - Standard back-propagation



#### **Tucker Decomposition on Kernel Tensor**

#### Convolution kernel tensor

- input (source) tensor X size H x W x S
- output (target) tensor Y size H' x W' x S

$$\mathcal{Y}_{h',w',t} = \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{s=1}^{S} \mathcal{K}_{i,j,s,t} \, \mathcal{X}_{h_i,w_j,s},$$

$$h_i = (h'-1)\Delta + i - P \text{ and } w_j = (w'-1)\Delta + j - P.$$
(1)

- $\rightarrow$  K = 4-way kernel tensor of size D x D x S x T
- $\rightarrow$   $\triangle$  = stride
- $\rightarrow$  P = zero-padding size

#### **Tucker Decomposition**

• K = The rank-(R1;R2;R3;R4) Tucker decomposition of 4-way kernel tensor

$$\mathcal{K}_{i,j,s,t} = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \sum_{r_3=1}^{R_3} \sum_{r_4=1}^{R_4} \mathcal{C}'_{r_1,r_2,r_3,r_4} U^{(1)}_{i,r_1} U^{(2)}_{j,r_2} U^{(3)}_{s,r_3} U^{(4)}_{t,r_4},\tag{2}$$

- $\rightarrow$  C' = core tensor of size R<sub>1</sub> x R<sub>2</sub> x R<sub>3</sub> x R<sub>4</sub>
- →  $U^{(1)}$ ,  $U^{(2)}$ ,  $U^{(3)}$ ,  $U^{(4)}$  = factor matrices sizes D x R<sub>1</sub>, D x R<sub>2</sub>, S x R<sub>3</sub>, and T x R<sub>4</sub>
- Under Tucker-2 decomposition, the kernel tensor is decomposed to:

$$\mathcal{K}_{i,j,s,t} = \sum_{r_3=1}^{R_3} \sum_{r_4=1}^{R_4} \mathcal{C}_{i,j,r_3,r_4} U_{s,r_3}^{(3)} U_{t,r_4}^{(4)}$$

→ C = a core tensor of size D x D x  $R_3 x R_4$ 

• After substituting, performing rearrangements and grouping summands:

$$\mathcal{Z}_{h,w,r_{3}} = \sum_{s=1}^{S} U_{s,r_{3}}^{(3)} \mathcal{X}_{h,w,s}, \qquad (3)$$

$$\mathcal{Z}_{h',w',r_{4}}' = \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{r_{3}=1}^{R_{3}} \mathcal{C}_{i,j,r_{3},r_{4}} \mathcal{Z}_{h_{i},w_{j},r_{3}}, \qquad (4)$$

$$\mathcal{Y}_{h',w',t} = \sum_{r_{4}=1}^{R_{4}} U_{t,r_{4}}^{(4)} \mathcal{Z}_{h',w',r_{4}}', \qquad (5)$$

 $\rightarrow$  Z and Z' are intermediate tensors of sizes H x W x R<sub>3</sub> and H' x W' x R<sub>4</sub>



Tucker-2 decompositions for speeding-up a convolution

- → Each transparent box = 3-way tensor X, Z, Z', Y
- → Two frontal sides = spatial dimensions
- → Arrows = linear mappings illustrate how scalar values on the right are computed
- → Yellow tube, red-box, and blue tube =  $1 \times 1$ ,  $D \times D$ , and  $1 \times 1$  convolution in (3), (4), and (5)

#### 1 x 1 convolution

- Computing Z from X in (3) and Y from Z' in (5)
- perform pixel-wise linear re-combination of input maps
- Introduced in network-in-network
- Extensively used in inception module of GoogLeNet

#### Complexity analysis

 $M = \frac{D^2 ST}{SR_3 + D^2 R_3 R_4 + TR_4} \quad \text{and} \quad E = \frac{D^2 STH'W'}{SR_3 HW + D^2 R_3 R_4 H'W' + TR_4 H'W'},$ 

- $\rightarrow$  M = Compression ratio
- $\rightarrow$  E = Speed-up ratio
- Bounded by ST=R<sub>3</sub>R<sub>4</sub>

#### Tucker vs CP

- CP decomposition
  - Applied to approximate the convolution layers of CNNs for ImageNet which consist of 8 layers
  - Cannot be applied to the entire layers
  - Instability issue of low-rank CP decomposition
- Kernel tensor approximation with Tucker decomposition
  - Can be successfully applied to the entire layers of AlexNet, VGG-S, GoogLeNet, and VGG-16

## Rank of a CNN

• Key parameter that determines the complexity of each layer

#### • Directly related to,

- Memory usage
- Runtime
- Energy consumption
- Accuracy

### **Rank Selection with Global Analytic VBMF**

#### • VBMF - Variational Bayesian Matrix Factorization

- Available as a MATLAB function
- Find the rank of matrix instead of tensor
- Therefore tensors converted to matrices process is called **matricization**

#### • VBMF applied on,

- Mode 3 matricization size is  $S \times TD^2$
- Mode 4 matricization size is  $T X D^2 S$
- VBMF determined rank R3 and R4

#### Mode 3 matricization

#### Mode 4 matricization



### Example of rank selection using VBMF on a CNN



#### What is Reconstruction Error?



- The distance between original data point and it's projection onto a lower dimensional subspace
- Red points original data points
- Blue points projected points

## **Fine Tuning**

- Reconstruction error of linear kernel tensors were minimized
  - Therefore accuracy dropped
  - For example AlexNet dropped more than 50%
- Method of fine tuning ?
  - Standard back propagation
- Accuracy was recovered by using fine-tuning with ImageNet training dataset
  - 1 epoch recover accuracy quickly
  - More than 10 epochs recover original accuracy

#### Accuracy of compressed CNNs in fine-tuning

• Base learning  $\eta = 10^{-3}$ 



27

## **Experiments**

## 1. Overall Results for ImageNet 2012 dataset

- Original Vs. Compressed
   CNN
- \* compression
- Tested on
  - Smartphones
    - S6: Samsung
       Galaxy S6
  - Nvidia Titan X
- **FLOPs** Floating point operations per second
- Weights weights between input and hidden layer in NN

| Model        | Top-5   | Weights         | FLOPs           | S6              |                 | Titan X         |
|--------------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|
| AlexNet      | 80.03   | 61M             | 725M            | 117ms           | 245mJ           | 0.54ms          |
| AlexNet*     | 78.33   | 11M             | 272M            | 43ms            | 72mJ            | 0.30ms          |
| (imp.)       | (-1.70) | $(\times 5.46)$ | $(\times 2.67)$ | $(\times 2.72)$ | $(\times 3.41)$ | $(\times 1.81)$ |
| VGG-S        | 84.60   | 103M            | 2640M           | 357ms           | 825mJ           | 1.86ms          |
| VGG-S*       | 84.05   | 14M             | 549M            | 97ms            | 193mJ           | 0.92ms          |
| (imp.)       | (-0.55) | $(\times 7.40)$ | $(\times 4.80)$ | $(\times 3.68)$ | $(\times 4.26)$ | $(\times 2.01)$ |
| GoogLeNet    | 88.90   | 6.9M            | 1566M           | 273ms           | 473mJ           | 1.83ms          |
| GoogLeNet*   | 88.66   | 4.7M            | 760M            | 192ms           | 296mJ           | 1.48ms          |
| (imp.)       | (-0.24) | $(\times 1.28)$ | $(\times 2.06)$ | $(\times 1.42)$ | $(\times 1.60)$ | $(\times 1.23)$ |
| VGG-16       | 89.90   | 138M            | 15484M          | 1926ms          | 4757mJ          | 10.67ms         |
| VGG-16*      | 89.40   | 127M            | 3139M           | 576ms           | 1346mJ          | 4.58ms          |
| (imp.)       | (-0.50) | $(\times 1.09)$ | $(\times 4.93)$ | $(\times 3.34)$ | $(\times 3.53)$ | $(\times 2.33)$ |
|              | 1       |                 |                 | 1               |                 |                 |
| N / Accuracy |         |                 | Ru              | Intime          | Energy          |                 |

#### 2. Layerwise Analysis

Each row has two results

- Original uncompressed CNN
- Compressed CNN

Table 2: Layerwise analysis on *AlexNet*. Note that conv2, conv4, and conv5 layer have 2-group structure. (S: input channel dimension, T: output channel dimension,  $(R_3, R_4)$ : Tucker-2 rank).

| Layer  | S/R3           | $T/R_4$                               | Weights         | FLOPs              | S6                        |
|--------|----------------|---------------------------------------|-----------------|--------------------|---------------------------|
| conv1  | 3              | 96                                    | 35K             | 105M               | 15.05 ms                  |
| conv1* |                | 26                                    | 11K             | 36M(=29+7)         | 10.19m(=8.28+1.90)        |
| (imp.) |                |                                       | $(\times 2.92)$ | $(\times 2.92)$    | (×1.48)                   |
| conv2  | $48 \times 2$  | $128 \times 2$                        | 307K            | 224M               | 24.25 ms                  |
| conv2* | $25 \times 2$  | $59 \times 2$                         | 91K             | 67M(=2+54+11)      | 10.53ms(=0.80+7.43+2.30)  |
| (imp.) |                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $(\times 3.37)$ | (×3.37)            | (×2.30)                   |
| conv3  | 256            | 384                                   | 885K            | 150M               | 18.60ms                   |
| conv3* | 105            | 112                                   | 178K            | 30M(=5+18+7)       | 4.85ms(=1.00+2.72+1.13)   |
| (imp.) |                |                                       | $(\times 5.03)$ | $(\times 5.03)$    | (×3.84)                   |
| conv4  | $192 \times 2$ | $192 \times 2$                        | 664K            | 112M               | 15.17ms                   |
| conv4* | $49 \times 2$  | $46 \times 2$                         | 77K             | 13M(=3+7+3)        | 4.29  ms(=1.55+1.89+0.86) |
| (imp.) |                | 1.121                                 | $(\times 7.10)$ | (×7.10)            | (×3.53)                   |
| conv5  | $192 \times 2$ | $128 \times 2$                        | 442K            | 75.0M              | 10.78ms                   |
| conv5* | $40 \times 2$  | $34 \times 2$                         | 49K             | 8.2M(=2.6+4.1+1.5) | 3.44  ms(=1.15+1.61+0.68) |
| (imp.) |                |                                       | $(\times 9.11)$ | (×9.11)            | (×3.13)                   |
| fc6    | 256            | 4096                                  | 37.7M           | 37.7M              | 18.94ms                   |
| fc6*   | 210            | 584                                   | 6.9M            | 8.7M(=1.9+4.4+2.4) | 5.07  ms(=0.85+3.12+1.11) |
| (imp.) |                | 0.00                                  | $(\times 8.03)$ | (×4.86)            | (×3.74)                   |
| fc7    | 4096           | 4096                                  | 16.8M           | 16.8M              | 7.75ms                    |
| fc7*   |                | 301                                   | 2.4M            | 2.4M(=1.2+1.2)     | 1.02  ms(=0.51+0.51)      |
| (imp.) |                |                                       | $(\times 6.80)$ | (×6.80)            | (×7.61)                   |
| fc8    | 4096           | 1000                                  | 4.1M            | 4.1M               | 2.00ms                    |
| fc8*   |                | 195                                   | 1.0M            | 1.0M(=0.8+0.2)     | 0.66ms(=0.44+0.22)        |
| (imp.) |                | CI CI LI C                            | $(\times 4.12)$ | (×4.12)            | (×3.01)                   |

#### Observations

- The smartphone tends to give larger performance gain than the Titan X
  - Mobile phone GPUs lacks in thread-level parallelism.
    - 24 times less number of threads than Titan X
  - Reduces the amount of weights by reducing cache conflicts and memory latency.

- Mobile phones shows larger performance in FC layers than Conv layers
  - Reduced cache conflicts enabled by network compression
  - The weights at the fully-connected layers are utilized only once (DoA)
  - DoA data are more harmful than Conv kernel weights

#### 3. Energy Consumption Analysis

**Compression reduces** 

- Power consumption
- Runtime



Figure 5: Power consumption over time for each model. (Blue: GPU, Red: main memory).

#### Cond...

- The reduction in energy consumption is larger than that in runtime
- Power consumption of compressed CNN is smaller than uncompressed CNN
  - Due to the extensive usage of 1 × 1 convolutions in the compressed CNN
- For executing convolutions they applied optimization techniques such as Caffeinated convolution
- In cache efficiency, 1 × 1 convolutions are inferior to the other convolutions (3×3, 5×5 etc)
  - 1 × 1 convolutions tend to incur more cache misses
- However, 1 × 1 convolutions have negative impacts on cache efficiency and GPU core utilization

In the uncompressed networks,

- AlexNet and VGG-S the power consumption of GPU core tends to be stable
- GoogLeNet the power consumption tends to fluctuate.
- In fully connected layers incur significant amount of power consumption in main memory

In the compressed networks,

- The power consumption of GPU core tends to change more frequently
- Reduces the amount of weights at fully connected layers

## Discussion

#### • One-shot rank selection

- Very promising results
- Not fully investigated yet whether the selected rank is really optimal/not
- Future work: Investigate optimality of the proposed scheme
- 1 x 1 convolution
  - Key operation in compressed model and in inception module of GoogLeNet
  - Lacks in cache efficiency
  - Future work: investigating to make best use of 1x1 convolutions
- Whole network compression
  - $\circ$   $\,$  Large design space and associated long design time  $\,$
  - Propose: a one-shot compression scheme (applies a single general low-rank approximation method and a global rank selection method)
- Oneshot compression
  - Fast design, easy implementation with publicly available tools
- Effectiveness evaluation smartphone and Titan X
  - improvements in runtime (energy consumption) on the smartphone for 4 CNNs(AlexNet, VGG-S, GoogLeNet, and VGG- 16)

# THANK YOU !

# Q & A