COMPRESSION OF DEEP CONVOLUTIONAL
NEURAL NETWORKS
FOR FAST AND LOW POWER MOBILE
APPLICATIONS

Group 09

E/15/065 - DE SILVAK.G.P.M. - e15065@eng.pdn.ac.lk

E/15/119 - HASANIKAD.L.D. - e15119@eng.pdn.ac.lk

E/15/202 - LIYANAGE D.P. - e15202@eng.pdn.ac.lk

E/15/208 - MADHUSHANEE G.G.R.D. - rosh.madhu@eng.pdn.ac.lk



mailto:e15065@eng.pdn.ac.lk
mailto:e15119@eng.pdn.ac.lk
mailto:e15202@eng.pdn.ac.lk
mailto:rosh.madhu@eng.pdn.ac.lk

Background

Authors : Yong-Deok Kim Published : a conference paper at ICLR
Eunhyeok Park 2016
Sungjoo Yoo
Taelim Choi
Lu Yang

Dongjun Shin

E/15/119 - Dinithi



Introduction
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Mobile applications of CNNs

e Mobile devices use CPU and GPU, running deeper CNNs for complex tasks
Ex: ImageNet classification

e Issues - Mobile devices have strict constraints in computing power,
battery, and memory capacity

e Improve test-time performance - Compressions on convolution layers
without noticeable impact on accuracy
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Whole network compression

Existing methods effective in reducing the computation cost of a single
convolutional layer

Aims at compressing the entire network

Reduce the computational cost

Nontrivial to compress whole and very deep CNNs for complex tasks such as
ImageNet classification

Methods used Earlier - Asymmetric (3d) decomposition (Zhang et al. (2015b)
This paper presents simple, powerful whole network compression
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Contribution
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One-shot whole network compression consists of 3 steps
o Rank selection
o Low-rank tensor decomposition
o Fine-tuning

Can be easily implemented using publicly available tools

Evaluate various compressed CNNs on both Titan X and smartphone

O  AlexNet

o  VGG-S

O  GoogleNet
o  VGG-16

Significant reduction in model size, runtime, and energy consumption are obtained, at
the cost of small loss in accuracy
Analyse power consumption over time and observe behaviours of 1 x 1 convolution
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Related Work
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1. CNN Compression

e Singular value decomposition(SVD) (Denton et al., 2014)
o The weight matrix of a fully-connected layer can be compressed by applying
truncated SVD without significant drop in the prediction accuracy

e Vector quantization (Gong et al., 2014), Hashing techniques (Chen et al., 2015),
Circulant projection (Cheng et al., 2015), Tensor train decomposition (Novikov et
al., 2015)
o Better compression capability than SVD

e Low-rank decomposition of convolutional kernel tensor (Denton et al., 2014;
Jaderberg et al.,2014; Lebedev et al., 2015)
o Speed up the convolutional layers
o Compress only single or a few layers
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e Asymmetric (3d) decomposition (Zhang et al. (2015b))

o To accelerate the entire convolutional layers, the original D x D convolution is decomposed to
Dx1,1xD,and 1 x 1 convolution

o Present a rank selection method based on PCA accumulated energy

o Present an optimization method which minimizes the reconstruction error of non-linear
responses

e Pruning approach (Han et al., 2015b;a)

o Reduce the total amount of parameters and operations in the entire network

e Implementation level approaches

o FFT method was used to speed-up convolution (Mathieu et al., 2013)
o In (Vanhoucke et al., 2011), CPU code optimizations to speed-up the execution of CNN
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Tensor Algebra

e Two of the most popular tensor decomposition models
1. CANDECOMP/PARAFAC model (Carroll & Chang, 1970; Harshman & Lundy, 1994;
Shashua & Hazan, 2005)
2. Tucker model (Tucker, 1966; De Lathauwer et al., 2000; Kim & Choi, 2007)

e In the paper - Tucker model for whole network compression

e Tucker-2 decomposition (GLRAM)
o from the second convolutional layer to the first fully connected layer

e Tucker-1 decomposition
o Other layers
o Equivalent to SVD
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Tucker decomposition
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A higher order extension of the singular value decomposition (SVD) of matrix
Perspective: computing the orthonormal spaces associated with the different modes of a tensor
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Difference of this paper compared to above related works

e Tucker decomposition is adopted to compress the entire convolutional and
fully-connected layers

e The kernel tensor reconstruction error is minimized instead of non-linear
response

e A global analytic solution of VBMF (Nakajima et al., 2012) is applied to
determine the rank of each layer

e Asingle run of fine-tuning is performed to account for the accumulation of
errors.
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Proposed Method
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One-shot whole network compression scheme

e Three steps
1) Rank Selection
o Analyze principal subspace of mode-3 and mode-4 matricization of each layer’s kernel
tensor with global analytic variational Bayesian matrix factorization
2)  Tucker decomposition
3) Fine-tuning
o  Standard back-propagation
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Tucker Decomposition on Kernel Tensor

Convolution kernel tensor

e input (source) tensor X - size HxW x S
e output (target) tensor Y - size H' x W’ x S

D D S

Vot wrt = ZZ Z,Ci.j.s.l A’h‘.ur_,,m (1)

=1 y=18=1

(" —1)A+i—Pand wij=(w'—1)A+j-P

hz’

-> K =4-way kernel tensor of size DxD xS xT
> A =stride
-> P = zero-padding size
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Tucker Decomposition

e K =The rank-(R1;R2;R3;R4) Tucker decomposition of 4-way kernel tensor
Ry Ry Ry

1
(1) r(2) 3) 17(4)
”“ Z Z Z Z C"l ra,ra, 7‘4(tr101 rszg r)altn (2)

ri=1ro=1rag=1ry=1

- (C'= oretensorofszeR xR xR xR
> UM ud yd y“ = factor matrlces sizesDxR,DxR,, SxR,, and TxR,

e Under Tucker-2 decomposition, the kernel tensor is decomposed to:

Ry Ry

— E § : -(J) r(4)
K:i,j,s,t — Ci,j,rs.m ' 8,rq Lt T4

ra=1ry=1

-> C =acore tensor of size D x D x R3x R4
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After substituting, performing rearrangements and grouping summands:

S

Zh.w,"n = Zbrgiir‘)a Xh.w.sa (3)
8=
D D Ry

Zi’:'.uv’.m = ZZ Z Cijirars Zhewy.rg: X

i=1 j=1rg=1

R4
P E r(4) = (5)
yh’.u".l T L’t.r_‘ Zh'.uv"r_‘.’
ra=1

- Z and Z’ are intermediate tensors of sizes H x W x R3 and H' x W’ x R4
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Tucker-2 decompositions
for speeding-up a convolution

Each transparent box = 3-way tensor X, Z, Z’, Y

Two frontal sides = spatial dimensions

Arrows = linear mappings - illustrate how scalar values on the right are computed

Yellow tube, red-box, and blue tube =1 x 1, D x D, and 1 x 1 convolution in (3), (4), and (5)

\ 0

1 x 1 convolution

Computing Z from X in (3) and Y from Z’ in (5)
perform pixel-wise linear re-combination of input maps
Introduced in network-in-network

Extensively used in inception module of GoogLeNet

E/15/208 - Roshani 19



Complexity analysis

D*8T and E = D*STH'W

M = 3
SRz + D?R3R4 + TRy SR:HW + D2R;R,.H'W’' + TR,H'W'

-> M = Compression ratio
-=> E = Speed-up ratio

e Bounded by ST=R,R,

Tucker vs CP

e CP decomposition
o Applied to approximate the convolution layers of CNNs for ImageNet which consist of 8
layers
o Cannot be applied to the entire layers
o Instability issue of low-rank CP decomposition
e Kernel tensor approximation with Tucker decomposition
o Can be successfully applied to the entire layers of AlexNet, VGG-S, GoogLeNet, and

VGG-16
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Rank of a CNN

o Key parameter that determines the complexity of each layer

e Directly related to,
Memory usage
Runtime

Energy consumption
Accuracy

O O O O
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Rank Selection with Global Analytic VBMF

e VBMF - Variational Bayesian Matrix Factorization
o Available as a MATLAB function
o Find the rank of matrix instead of tensor
o Therefore tensors converted to matrices - process is called matricization

e VBMF applied on,
o Mode 3 matricization - size is S X TD?
o Mode 4 matricization - size is T X D?S

e VBMF determined rank R3 and R4
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Mode 3 matricization

D2

D2

Mode 4 matricization

D? T

D2
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Example of rank selection using VBMF on a CNN

R1 - Rank of mode 1 matricization
Convolutional Layer 1 @ @ @ @ R2 - Rank of mode 2 matricization
R3 - Rank of mode 3 matricization
R4 - Rank of mode 4 matricization
Convolutional Layer 2 @ @ @ @
Convolutional Layer 3 @ @ @ @
Convolutional Layer 4 @ @ @ @
Convolutional Layer 5 @ @ @ @
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What is Reconstruction Error ?

A

The distance between original
data point and it’s projection
onto a lower dimensional
subspace

Red points - original data
points

Blue points - projected points
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Fine Tuning

e Reconstruction error of linear kernel tensors were minimized
o Therefore accuracy dropped
o For example AlexNet dropped more than 50%

e Method of fine tuning ?
o Standard back propagation

e Accuracy was recovered by using fine-tuning with ImageNet training
dataset
o 1 epoch - recover accuracy quickly
o More than 10 epochs - recover original accuracy
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Accuracy of compressed CNNs in fine-tuning

Base learning n = 1073

(o)
o

Top-5 accuracy

~J
(&)

(o0}
(&)

Qo
o

VGG-16:34.06 — 78.68 ... — 89.40

GoogleNet: 56.98 — 87.74 ... — 88.66

VGG-S: 60.10 — 81.09 ... — 84.19

AlexNet:23.39 — 74.74 ... — 78.33

n=103 n=10" n=107
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Experiments
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Overall Results for ImageNet 2012 dataset

Original Vs. Compressed

CNN

* compression

Tested on

o Smartphones

S6: Samsung

Galaxy S6

o Nvidia Titan X

FLOPs - Floating point
operations per second

Weights - weights between
input and hidden layer in NN

Model Top-5 | Weights | FLOPs S6 Titan X
AlexNet 80.03 61M 725M 117ms | 245mJ | 0.54ms
AlexNet* 78.33 1 1M 2712M 43ms 72m] | 0.30ms
(imp.) (-1.70) | (x5.46) | (x2.67) | (x2.72) | (x3.41) | (x1.81)
VGG-S 84.60 103M | 2640M | 357ms | 825mJ | 1.86ms
VGG-§* 84.05 14M 549M 97ms 193mJ | 0.92ms
(imp.) (-0.55) | (x7.40) | (x4.80) | (x3.68) | (x4.26) | (x2.01)
GoogLeNet 88.90 69M | 1566M | 273ms | 473mJ | 1.83ms
GoogLeNet* | 88.66 4™ 760M | 192ms | 296m] | 1.48ms
(imp.) (-0.24) | (x1.28) | (x2.06) | (x1.42) | (x1.60) | (x1.23)
VGG-16 89.90 138M | 15484M | 1926ms | 4757m] | 10.67ms
VGG-16* 89.40 127M | 3139M | 576ms | 1346mJ | 4.58ms
(imp.) (-0.50) | (x1.09) | (x4.93) | (x3.34) | (x ‘3\.53) (%2.33)
Accuécy Runtime Energy
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2. Layerwise Analysis

Each row has two results

Original uncompressed CNN
Compressed CNN

Table 2: Layerwise analysis on AlexNet. Note that conv2, conv4, and conv5 layer have 2-group

structure. (S: input channel dimension, 7": output channel dimension, (3, R4): Tucker-2 rank).

Layer S/R3 T/R4 | Weights | FLOPs S6

convl 3 96 35K | 105M 15.05 ms

convl* 26 11K | 36M(=29+7) 10.19m(=8.28+1.90)

(imp.) (x2.92) | (x2.92) (x1.48)

conv2 48 x 2 | 128 x 2 307K | 224M 24.25 ms

conv2* 25 x 2 59 x 2 91K | 67M(=2+54+11) 10.53ms(=0.80+7.43+2.30)
(imp.) (x3.37) | (x3.37) (x2.30)

conv3 256 384 885K | I150M 18.60ms

conv3* 105 112 178K | 30M(=5+18+7) 4.85ms(=1.00+2.72+1.13)
(imp.) (x5.03) | (x5.03) (x3.84)

conv4 192 x 2 | 192 x 2 664K | 112M 15.17ms

conv4* 49 x 2 46 x 2 77K 13M(=3+7+3) 4.29 ms(=1.55+1.89+0.86)
(imp.) (x7.10) | (x7.10) (x3.53)

convy 192 x 2 | 128 x 2 442K | 75.0M 10.78ms

conv5* 40 x 2 34 x 2 49K 8.2M(=2.6+4.1+1.5) | 3.44 ms(=1.15+1.61+0.68)
(imp.) (x9.11) | (x9.11) (x3.13)

fc6 256 4096 37.M | 37.7TM 18.94ms

fe6* 210 584 6.9M | 8. 7M(=1.9+4.4+2.4) | 5.07 ms(=0.85+3.12+1.11)
(imp.) (x8.03) | (x4.86) (x3.74)

fc7 4096 4096 16.8M | 16.8M 7.75ms

fc7* 301 2.4M 24M(=1.2+1.2) 1.02 ms(=0.51+0.51)
(imp.) (x6.80) | (x6.80) (x7.61)

fc8 4096 1000 4.1IM 4.1M 2.00ms

fc8* 195 1.OM 1.OM(=0.8+0.2) 0.66ms(=0.44+0.22)
(imp.) (x4.12) | (x4.12) (x3.01)

30



Observations

e The smartphone tends to give larger performance gain than the Titan X
o Mobile phone GPUs lacks in thread-level parallelism.
m 24 times less number of threads than Titan X
o Reduces the amount of weights by reducing cache conflicts and memory latency.

e Mobile phones shows larger performance in FC layers than Conv layers
o Reduced cache conflicts enabled by network compression
o The weights at the fully-connected layers are utilized only once (DoA)
o DoA data are more harmful than Conv kernel weights
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3. Energy Consumption Analysis

Compression reduces

Power consumption
Runtime
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Figure 5: Power consumption over time for each model. (Blue: GPU, Red: main memory).
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Cond...

e The reduction in energy consumption is larger than that in runtime

e Power consumption of compressed CNN is smaller than uncompressed CNN
o Due to the extensive usage of 1 x 1 convolutions in the compressed CNN

e For executing convolutions they applied optimization techniques such as Caffeinated

convolution

e In cache efficiency, 1 x 1 convolutions are inferior to the other convolutions (3x3, 5x5 etc)
o 1 x 1 convolutions tend to incur more cache misses

e However, 1 x 1 convolutions have negative impacts on cache efficiency and GPU core

utilization
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In the uncompressed networks,

e AlexNet and VGG-S - the power consumption of GPU core tends to be stable
e GooglLeNet - the power consumption tends to fluctuate.
e In fully connected layers incur significant amount of power consumption in main memory

In the compressed networks,

e The power consumption of GPU core tends to change more frequently
e Reduces the amount of weights at fully connected layers
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Discussion
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One-shot rank selection
o  Very promising results
o Not fully investigated yet whether the selected rank is really optimal/not
o  Future work: Investigate optimality of the proposed scheme
1 x 1 convolution
o Key operation in compressed model and in inception module of GoogLeNet
o Lacks in cache efficiency
o  Future work: investigating to make best use of 1x1 convolutions
Whole network compression
o Large design space and associated long design time
o Propose: a one-shot compression scheme (applies a single general low-rank approximation method
and a global rank selection method)
Oneshot compression
o Fast design, easy implementation with publicly available tools

Effectiveness evaluation - smartphone and Titan X

o improvements in runtime (energy consumption) on the smartphone for 4 CNNs(AlexNet, VGG-S,
GoogLeNet, and VGG- 16)
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