
Attention Is All you need 
Reading Group

E/15/021
E/15/330
E/15/366
E/15/373



Today’s Paper : ‘Attention Is All you need‘
• Conference : NIPS 2017
• Cited 966 times.
• Authors : 

• Ashish Vaswani (Google Brain)
• Noam Shazeer (Google Brain)
• Niki Parmar (Google Research)
• Jakob Uszkoreit (Google Research)
• Llion Jones (Google Research)
• Aidan N. Gomez (University of Toronto)
• Łukasz Kaiser (Google Brain)
• Illia Polosukhin

E/15/330



RECURRENT NEURAL NETWORKS: INTUITION

● Recurrent neural network (RNN) is a neural network model proposed 
in the 80’s for modelling time series.

● The structure of the network is similar to feedforward neural 
network, with the distinction that it allows a recurrent hidden state 
whose activation at each time is dependent on that of the previous 
time (cycle)



Introduction: former techniques are not good at parallelization

• Recurrent Neural Networks (RNNs)  and their cell variants are firmly established as state 

of art in sequence modeling and transduction.       (Eg:  machine translation)

• RNN generates a hidden states(h
t
) as a function of the previous hidden states(h

t-1
) and 

the input.

E/15/330



The fall of RNN / LSTM
● Recurrent neural network(RNN) is a good way to process sequential data, but 

the capability of RNN to compute long sequence data is inefficient.
● RNN is that they are not hardware friendly.

● LSTM and GRU and derivatives are able to learn a lot of longer term information! 
but they can remember sequences of 100s, not 1000s or 10,000s or more.

https://medium.com/@culurciello/computation-and-memory-bandwidth-in-deep-neural-networks-16cbac63ebd5


Introduction

• Using attention mechanisms allow us to draw global  
dependencies between input and output by a constant  
number of operations.

• In this work, they propose the Transformer which doesn’t  use 
recurrent architecture or convolutional architecture, and  
reaches a state-of-the-art in translation quality.

E/15/330



Background
● Attention mechanisms have become an integral part of recent models, but such attention 

mechanisms are used with a recurrent network.

● Reducing sequential computation is achieved by using CNN, or computing hidden states in 

parallel. 

● But in these methods, the number of operations to relate two input and output positions 

grows in the distance between distances. It is difficult to learn dependencies between 

distant positions.

E/15/330



Entire Model Architecture

• Left side : Encoder
• Right side : Decoder

• Consisting layers:
• Multi-Head Attention layer
• Position-wise Feed-Forward layer
• Positional Encoding
• (Residual Adding and Normalization layer)

E/15/330



Encoders And Decoders- High Level Look

E/15/330



Inside the Encoder and Decoder

● The encoder’s inputs first flow through a self-attention layer.
● The outputs of the self-attention layer are fed to a feed-forward neural 

network.
● The decoder has both those layers, but between them is an attention 

layer.
E/15/330



Bringing The Tensors Into The Picture

● NLP applications turning each input into a vector using an embedding 
algorithm.

● After embedding the words in our input sequence, each of them flows through 
each of the two layers of the encoder. E/15/330



Self attention in 
Encoder

Self attention in Decoder

Encoder-Decoder 
attention

1. Attentions 

E/15/373

:

”The animal didn't cross the 
street because it was too tired”



Self-Attention at a High Level

”The animal didn't cross the 
street because it was too tired”

● When the model is processing 
the word “it”, self-attention allows 
it to associate “it” with “animal”.

E/15/373



Self-Attention in Detail

● Multiplying x1 by the WQ 
weight matrix produces q1, the 
"query" vector associated with 
that word. We end up creating 
a "query", a "key", and a 
"value" projection of each word 
in the input sentence.

E/15/373



Self-Attention in Detail

● The score is calculated by taking the 
dot product of the query vector with the 
key vector of the respective word we’re 
scoring. 

● So if we’re processing the self-attention 
for the word in position #1, the first 
score would be the dot product of q1 
and k1. The second score would be the 
dot product of q1 and k2.

E/15/373



Self-Attention in Detail

E/15/373



Scaled Dot-Product Attention
• There are two most commonly used attention  
functions : additive attention and dot-product  
attention.

• Additive attention : 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝜎(𝑊    𝑄, 𝐾  + 𝑏))
• Dot-product attention : 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇

• Dot-product attention is much faster and  
space efficient.

E/15/373



Scaled Dot-Product Attention

                                                                   

where 𝑑𝑘 is the scaling factor preventing  
softmax function pushed into regions where it  
has extremely small gradients. E/15/373

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉)=



Multi-Head Attention

● With multi-headed attention, we 
maintain separate Q/K/V weight 
matrices for each head resulting 
in different Q/K/V matrices. As we 
did before, we multiply X by the 
WQ/WK/WV matrices to produce 
Q/K/V matrices.

E/15/373



Multi-Head Attention
• Instead of calculating single dot-product attention,  

they calculate multiple attentions. (for example, h = 8)

• They linearly project Q, K, and V h-times with  
different projections to 𝑑𝑘, 𝑑𝑘 𝑎𝑛𝑑 𝑑𝑣 dimensions. 

(They use 𝑑 = 𝑑𝑘 𝑣 ℎ= 
𝑑𝑚𝑜𝑑𝑒𝑙)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄, 𝐾,V) = 𝐶𝑜𝑛𝑐𝑎𝑡( ℎ𝑒𝑎𝑑1, …,) 

𝑊𝑂
𝑖 𝑖 𝑖

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄, 𝐾𝑊𝐾, 𝑉𝑊𝑉)

Parameter weight matrices E/15/373



Applications of Multi-Head Attention in 
model

• Transformer uses multi-head attention in three ways.
1. encoder-decoder attention : The queries(Q) come from  

the previous decoder layer, and keys(K) and values(V)  
come from the output of the encoder. (traditional  
attention mechanisms)

2. Self-attention layers in the encoder : All of the keys(K),  
values(V) and queries(Q) come from the same place, in  
this case, the output of the previous layer in the  
encoder.

3. Self-attention layers in the decoder : K,V,Q come from the  
output of the previous layer in the decoder. We need to  
prevent leftward information flow in the decoder to  preserve 
the auto-regressive property. 

E/15/373



Data Flow in Attention 
(Multi-Head)

Input

Output

Cited from : https://jalammar.github.io/illustrated-transformer/

E/15/373



Self-Attention in 
Decoder

• In the decoder, the self-attention layer is only allowed to  
attend to earlier positions in the output sequence. This is  
done by masking future positions (setting them to -inf)  
before the softmax step in the self-attention calculation.

E/15/373



Why 
Self-Attention?

1. Total computational complexity per layer
2. The amount of computation that can be parallelized
3. The path length between long-range dependencies
4. (As side benefit, self-attention could yield more interpretable  

models.)

E/15/373



2. Feed Forward Layer

E/15/021



Position-wise Feed-Forward 
Networks
• Feed-forward networks are applied to each position  
separately.

𝐹𝐹𝑁 𝑥 = 𝑅𝑒𝐿𝑈 𝑥𝑊1 + 𝑏1 𝑊2 + 𝑏2

dimension (512)
x1
x2
x3
x4
x5
x6
x7

word1  
word2  
word3  
word4  
word5

word6  
word7

Embedding dimension (512)
𝑅𝑒𝐿𝑈  𝑥1𝑊1 + 𝑏1 𝑊2 + 𝑏2

     𝑅𝑒𝐿𝑈 𝑥2𝑊1 + 𝑏1 𝑊2 + 𝑏2
    𝑅𝑒𝐿𝑈 𝑥3𝑊1 + 𝑏1 𝑊2 + 𝑏2
     𝑅𝑒𝐿𝑈 𝑥4𝑊1 + 𝑏1 𝑊2 + 𝑏2

       𝑅𝑒𝐿𝑈 𝑥5𝑊1 + 𝑏1 𝑊2 + 𝑏2
    𝑅𝑒𝐿𝑈 𝑥6𝑊1 + 𝑏1 𝑊2 + 𝑏2
     𝑅𝑒𝐿𝑈 𝑥7𝑊1 + 𝑏1 𝑊2 + 𝑏2

E/15/021



The Residuals

● Skipping some layers

E/15/021



3. Positional Encoding

E/15/021



Positional Encoding

• Since their model doesn’t contain recurrence and convolution,  it 
is needed to inject some information about the position 
of the tokens in the sequence.

• So they add “positional encoding” to input embedding.
• Each element of PE is as following :

𝑃𝐸 𝑝𝑜𝑠,   2𝑖 = 
sin

, 𝑃𝐸 𝑝𝑜𝑠,    2𝑖     + 1= 
cos

𝑝𝑜𝑠
2𝑖

• 𝑝𝑜𝑠 is the location of the word, 𝑖 is the index of dimension in word  
embedding.

E/15/021



Positional Encoding

E/15/021



Decoder

● 6 layers

● 3 sub layers in each layer

○ Self-attention 

○ Encoder-decoder attention 

○ Feed-forward

● 2 inputs to each decoder

E/15/021



4. FC and Softmax layer

E/15/021



Final FC and softmax layer

E/15/021



 Selecting model prediction

• When selecting model output, we can take the word with the  
highest probability and throw away the rest word  candidates. : 
greedy decoding

• Another way to select model output is beam-search.

E/15/366



Beam-search

• beam-search
• Instead of only predicting the token with the best score,  we 
keep track of k hypotheses (for example k=5, we refer  to k 
as the beam size).

• At each new time step, for these k hypotheses, we have V  
new possible tokens. It makes a total of kV new  hypotheses. 
Then, only keep top k hypotheses, … .

• The length of words to hold is also a parameter.

E/15/366



Experiment- sequence to sequence 
task
• Data

• WMT2014 English-German : 4.5 million sentence pairs
• WMT2014 English-French : 36 million sentences

• Hardware and Schedule
• 8 NVIDIA P100 GPUs
• Base model : 100,000 steps or 12 hours
• Big model : 300,000 steps (3.5 days)

• Optimizer : Adam 
• Warm up, and then decrease learning rate.

E/15/366



Regularization

Residual Dropout : 
● apply dropout to the sums of the embeddings and the positional 

encodings in both the encoder and decoder stacks.

Label Smoothing :
● During training, employed label smoothing of value ls = 0.1. This hurts 

perplexity, as the model learns to be more unsure, but improves 
accuracy and BLEU score.

E/15/366



Experiment - Result

E/15/366



Conclusion

• They presented the Transformer, the first sequence  
transduction model based entirely on attention, replacing the  
recurrent layers most commonly used in encoder-decoder  
architectures with multi-headed self-attention.

• The Transformer can be trained significantly faster than  
architectures based on recurrent or convolutional layers.

E/15/366



Thank You


