Attention Is All you need

Reading Group

E/15/021
E/15/330
E/15/366
E/15/373

Today’s Paper : ‘Attention Is All you need’

* Conference : NIPS 2017
* Cited 966 times.

 Authors :
* Ashish Vaswani (Google Brain)
* Noam Shazeer (Google Brain)
 Niki Parmar (Google Research)
« Jakob Uszkoreit (Google Research)
* Llion Jones (Google Research)
* Aidan N. Gomez (University of Toronto)
* L ukasz Kaiser (Google Brain)

* |[llia Polosukhin
E/15/330

RECURRENT NEURAL NETWORKS: INTUITION

e Recurrent neural network (RNN) is a neural network model proposed
in the 80's for modelling time series.

e The structure of the network is similar to feedforward neural
network, with the distinction that it allows a recurrent hidden state
whose activation at each time is dependent on that of the previous

time (cycle)
; ! A ! ;
woh; bo Woh, bo Woh| l3’0 Wohv bo Woh; bo
L T _I Whh, bn Whh, bn Whh, bn Whh, b Whh, b
he — hy ——» h, ——» hy —» = — hy —>
A A A A A
th Whx th Whx Whx

Introduction: former techniques are not good at parallelization

e Recurrent Neural Networks (RNNs) and their cell variants are firmly established as state

of art in sequence modeling and transduction.

(Eg: machine translation)

e RNN generates a hidden states(ht) as a function of the previous hidden states(ht_l) and

the input.

®
]

®
I

R

A

:

>

)
:
6

-

®)
:
b

E/15/330

The fall of RNN / LSTM

e Recurrent neural network(RNN) is a good way to process sequential data, but
the capability of RNN to compute long sequence data is inefficient.
e RNN is that they are not hardware friendly.

A

~

619
o TSR] A
© ® &

e LSTM and GRU and derivatives are able to learn a lot of longer term information!
but they can remember sequences of 100s, not 1000s or 10,000S Or more.

https://medium.com/@culurciello/computation-and-memory-bandwidth-in-deep-neural-networks-16cbac63ebd5

Introduction

 Using attention mechanisms allow us to draw global
dependencies between input and output by a constant
number of operations.

*In this work, they propose the Transformer which doesn’t use
recurrent architecture or convolutional architecture, and

reaches a state-of-the-art in translation quality.
)

THE
TRANSFORMER

E/15/330

_J

E/15/330

Background

e Attention mechanisms have become an integral part of recent models, but such attention
mechanisms are used with a recurrent network.

e Reducing sequential computation is achieved by using CNN, or computing hidden states in
parallel.

e Butinthese methods, the number of operations to relate two input and output positions

grows in the distance between distances. It is difficult to learn dependencies between

distant pOSitionS. English — detected ~ & o & French ~ [_D <)
I'm a flat earther Je suis un fou
French ~ & o) & English ~ |E] LD

Je suis un fou I'm a crazy person

Output
Probabilities

Entire Model Architecture

i

~
) (Add & Norm J=~
* Left side : Encoder “Foed
orwar
« Right side : Decoder : f_l T
g PR Murti-Head
Feed Attention
. . Forward P N x
* Consisting layers: . = ,m%:
i i * | r{AddSNorm) SorE
* Multi-Head Attention layer T M
agm . Attention Attention
* Position-wise Feed-Forward layer —— o
g . (et J _ =)
* Positional Encoding Positional L)| Positional
» (Residual Adding and Normalization layer) ="°“" — omput® Encodlag
Embedding Embedding
I I
Inputs Outputs

(shifted right)

E/15/330

Encoders And Decoders- High Level Look

L1 »)

f(

\S

ENCODERS

DECODERS

—

z : :)
ENCODER +> (DECODER
(S J >
& 4
(4y 2
ENCODER (DECODER
- J J
& 4
r \ s \
ENCODER DECODER
\ J) J
b 4
= ™ (= ey
ENCODER DECODER
\ J \ J
4 4
& ™ s ~
ENCODER DECODER
\ J \ J
4 4
{ -3 =
ENCODER (DECODER
\ J J
* 2

f

E/15/330

Inside the Encoder and Decoder

() G\

~
Feed Forward
-
i 2
N N
Feed Forward Encoder-Decoder Attention
J | J
4 pr— o
Y Y
Self-Attention ‘ Self-Attention
F /) : e

The encoder’s inputs first flow through a self-attention layer.

The outputs of the self-attention layer are fed to a feed-forward neural
network.

The decoder has both those layers, but between them is an attention

layer.
E/15/330

Bringing The Tensors Into The Picture

Feed Forward
Neural Network
[Self-Attention]

NLP applications turning each input into a vector using an embedding

algorithm.
After embedding the words in our input sequence, each of them flows through

each of the two layers of the encoder. E/15/330

1. Attentions

"The animal didn't cross the

street because it was too tired”’

Add & Norm

Self attention in
Encoder

Positional
Encoding

Feed
Forward

Add & Norm

Multi-Head
Attention

4

Input
Embedding

I

Inputs

Output
Probabilities

Linear

. N\
Add & Norm

Feed
Forward
 _______________J

Add & Norm

Multi-Head
Attention

Masked
Multi-Head
Attention

E>—® Positional
Encoding
Output
Embedding

I

OQutputs
(shifted right)

Encoder-Decoder
Nx attention

Self attention in Decoder

E/15/373

Self-Attention at a High Level

"The animal didn't cross the
street because it was too tired

e \When the model is processing
the word “it”, self-attention allows
it to associate “it” with “animal’.

Layer:| 5 5| Attention:

Input - Input

The_
animal_
didn_

Cross_
the_

street_
because_

was

too
tire

E/15/373

Self-Attention in Detail

Multiplying x1 by the WQ
weight matrix produces g1, the
"query" vector associated with
that word. We end up creating
a "query", a "key", and a
"value" projection of each word
in the input sentence.

Input

Embedding

Queries

Keys

Values

Thinking

51 B

o[1]

Machines

X:LT T 1]

q:[T T

v[TT]

E/15/373

wea

WK

wVv

Self-Attention in Detail

The score is calculated by taking the
dot product of the query vector with the
key vector of the respective word we're
scoring.

So if we're processing the self-attention
for the word in position #1, the first
score would be the dot product of g1
and k1. The second score would be the
dot product of g1 and k2.

Input

Embedding

Queries

Keys

Values

Score

Thinking Machines

o L1 [| e T T 11

1]
0

@
11T

qi o k

E/15/373

Self-Attention in Detail

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (v)

Softmax

Softmax
X
Value

Sum

Thinking
x [N
G
« [
vi [
Q10k1=1'12

0.88
v [
2, [N

Machines

[T T 1]
e [T

« [HEE

qi * k2 =96

0.12

z [
E/15/373

Scaled Dot-Product Attention
Scaled Dot-Product Attention

* There are two most commonly used attention

functions : additive attention and dot-product t
attention. —
 Additive attention : Softmax(c(W QK]+ b)) SoftMax
* Dot-product attention : Softmax okl) Mask*(opt)
* Dot-product attention is much faster and s:a -
space efficient. 7
MatMul
t 1

Q KV

E/15/373

Scaled Dot-Product Attention

wa Q Q '
4 - - 5 .
Attention (Q, K, V)= softmax()
Vi

where,/d, is the scaling factor preventing
softmax function pushed into regions where it
has extremely small gradients. E/15/373

Multi-Head Attention

With multi-headed attention, we
maintain separate Q/K/V weight
matrices for each head resulting Qo
in different Q/K/V matrices. As we :
did before, we multiply X by the
WQ/WK/WV matrices to produce

Q/K/V matrices.

ATTENTION HEAD #0

—

ATTENTION HEAD #1

E/15/373

W1(;

Multi-Head Attention Multi-Head Attention

)
* Instead of calculating single dot-product attention, Linear
they calculate multiple attentions. (for example, h = 8) 1
Concat
* They linearly project Q, K, and V h-times with 4 I
different projections to d,, d, and d dimensions. Scaled Dot-Product lJ& .
Attention
(Theyused,=d, :—dm}fdd) 1 N |

L

Linear

" - "4
Linear ,} Linear L]

I [

l
where head. = Attention(QWQW) i

Parameter weight matrices

MultiHead (Q, K,V) = Concat(headl, ens) r
WO

N

E/15/373

Applications of Multi-Head Attention in
model

 Transformer uses multi-head attention in three ways.

1.

encoder-decoder attention : The queries(Q) come from
the previous decoder layer, and keys(K) and values(V)
come from the output of the encoder. (traditional
attention mechanisms)

Self-attention layers in the encoder : All of the keys(K),
values(V) and queries(Q) come from the same place, in
this case, the output of the previous layer in the
encoder.

Self-attention layers in the decoder : K,V,Q come from the

output of the previous layer in the decoder. We need to
prevent leftward information flow in the decoder to preserve

the auto-regressive property.

Multi-Head Attention

¢

Linear

Concat

A

Scaled Dot-Product

2

Attention
tl tl 4l
Linear Linear L] Linear |_]
V K Q

E/15/373

Cited from : https://jalammar.github.io/illustrated-transformer/

Data Flow in Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices ~ Q/K/V matrices produce the output of the layer
W@
‘ WK Q
Thinking ¥V 0 0
Machines = WOV [Ko
- Vo
In
put W,
* In all encoders other than #0, T e WK 015 ;
we don’t need embedding. I WV ==, K 4
We start directly with the output ' Vi

of the encoder right below this one

-y Output
1 \WK Q7

=
=~

E/15/373

Self-Attention In
Decoder

*In the decoder, the self-attention layer is only allowed to

A“Anﬁl | S AAI.I P W NN ‘ o~~~ --‘ ‘IﬁA PR R Ry TIA P A

Decoding time step: 1(2)3 4 5 6 OUTPUT I

Linear + Softmax)

e . @
T 1

[ENCODERS] [DECODERS]
EEEEEEEEE 4+ +

WITH TIME I e | I 1)
ssssss

EEEEEEEEEE N I |] G i S S) (] i 1) G

o E/15/373

Why
Self-Attentlon’?

Total computational complexity per layer

The amount of computation that can be parallelized
The path length between long-range dependencies

rwN o

models.)

(As side benefit, self-attention could yield more interpretable

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel

size of convolutions and 7 the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations
| Self-Attention O(n® - d) 0O(1) 0O(1)
Recurrent O(n - d%) O(n) O(n)
Convolutional O(k-n-d?) o(1) O(logk(n))
Self-Attention (restricted) O(r-n-d) o(1) O(n/r)

E/15/373

Output
Probabilities

2. Feed Forward Layer

Linear

Add & Norm

Feed
Forward

[_Add & Norm | .
el e Multi-Head
Feed Attention
Forward 7 g} 7 N x
N Add & Norm
x [_Add & Norm |
Add & Norm asred
Multi-Head Multi-Head
Attention Attention
. , T
‘ _ _JJ
Positional D E9—® Positional
Encoding y Encoding
Input Output
Embedding Embedding
Inputs OQutputs

(shifted right) E/15/021

Position-wise Feed-Forward

Networks

* Feed-forward networks are applied to each position

word1
word2
word3
word4
word5

word6
word7

E/15/021

separately. FFN(x) = ReLU(xW, + by)W; + b,

Embedding dimension (512)

x1

x2

x3

x4

x5

X6

x7

dimension (512)

ReLU(x. W_+b.)

W, +b,

ReLU (x, W, +b.)

W._+b.

ReLU(xw+b)

W,+b,

ReLU(xW +b)

W,+b,

ReLU(xW+b)

W,+b,

ReLU(xw+b)

W,+b,

ReLU(xW +b)

W,+b,

The Residuals

. Skipping some layers

. E' £ %
; . (Feed Forward) (Feed Forward)
Q | Mmmmmanes EECTTTCCLPP T PYTTrT F
> ,-»(Add & Normalize)
“1 4 4
; (Self-Attention)
Sy T —/

" @ ®
o 1T e 1]

Thinking Machines

E/15/021

Output
Probabilities

3. Positional Encoding

. N\
Add & Norm J<=~
Feed
Forward
s R Add & Norm _j==~
[_Add & Norm | :
— —Add gt Multi-Head
Feed Attention
Forward P) 7 7 N x
-,
N Add & Norm
Add & Norm asred
Multi-Head Multi-Head
Attention Attention
, T,
I

Positional »‘ - A‘ Positional
Encodin ‘1‘0 '} L Encoding
Input Qutpu
Embedding Embedding

Inputs OQutputs
(shifted right) E/15/021

Positional Encoding

 Since their model doesn’t contain recurrence and convolution, it
is needed to inject some information about the position
of the tokens in the sequence.

» So they add “positional encoding” to input embedding.

* Each element of PE is as following :

; . pos . _ , pos
PE(pos, 2i) = snn(5).PE(pos,Z: +1) = cus()

21l
100009modet 100009 modet

* pos is the location of the word, i is the index of dimension in word
embedding.
E/15/021

Positional Encoding

C

ENCODER #1 ' ' ‘ DECODER #1
a F 3 A
(ENCODER #0 ' ' ‘ DECODER #0
L A A a
EMBEDDING
WITH TIME
SIGNAL X1 X2| X3 |
POSITIONAL —T—T—T Y i T T
Sncoping I [[[[] [[[[]
+ + +
EMBEDDINGS [x:[T T 1] xs [T T 1]
INPUT Je suis étudiant E/15/021

Decoder

e O layers

e 3 sub layers in each layer
o Self-attention
o0 Encoder-decoder attention
o Feed-forward

e 2 inputs to each decoder

’ "(Add & Normalize)
Nk))

."(Encoder-Decoder Attention)
REDITIITT SECTCLLCL LI LT)

,»(Add & Normalize)
; i i

: C Self-Attention)

E/15/021

4. FC and Softmax layer ,ouwe

Add & Norm
Feed
Forward
' B Add & Norm ==~
_ .
el e Multi-Head
Feed Attention
Forward 7 g} 7 N x
-,
N Add & Norm _Je—
f—>| Add & Norm l Masked
Multi-Head Multi-Head
Attention Attention
, VO, , T
— J U —
Positional D G9—® Positional
Encoding y Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right) E/15/021

Final FC and softmax layer

Which word in our vocabulary

. am
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs [T

8123 4%5 * .. vocab_size
(Softmax)
4
logits INEEENNENNENNNNEE B
0AZ2345 .. vocab_size
4
(Linear)
A&
Decoder stack output [EEETE

E/15/021

Selecting model prediction

* When selecting model output, we can take the word with the
highest probability and throw away the rest word candidates. :
greedy decoding

* Another way to select model output is beam-search.

E/15/366

Beam-search

ebeam-search

* Instead of only predicting the token with the best score, we
keep track of k hypotheses (for example k=5, we refer to k
as the beam size).

At each new time step, for these k hypotheses, we have V
new possible tokens. It makes a total of kV new hypotheses.
Then, only keep top k hypotheses,

* The length of words to hold is also a parameter.

E/15/366

Experiment- sequence to sequence
task

*Data
« WMT2014 English-German : 4.5 million sentence pairs
« WMT2014 English-French : 36 million sentences

« Hardware and Schedule
* 8 NVIDIA P100 GPUs
« Base model : 100,000 steps or 12 hours
 Big model : 300,000 steps (3.5 days)

* Optimizer : Adam

« Warm up, and then decrease learning rate.
E/15/366

Regularization

Residual Dropout :
. apply dropout to the sums of the embeddings and the positional
encodings in both the encoder and decoder stacks.

Label Smoothing :
 During training, employed label smoothing of value Is = 0.1. This hurts
perplexity, as the model learns to be more unsure, but improves
accuracy and BLEU score.

E/15/366

Experiment - Result

BLEU Training Cost (FLOPs)

model EN-DE EN-FR EN-DE EN-FR
“ByteNet [18] 23.15

Deep-Att + PosUnk [39] 39.2 1.0-10%
GNMT + RL [38] 246 39.92 2.3-10"* 14.10%
ConvS2S [9] 25.16 40.46 9.6-10"% 1.5-10%
MoE [32] 26.03 40.56 2.0-10"* 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0- 1070
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10* 1.1-10*
ConvS2S Ensemble [9] 26.36 41.29 7.7-101% 1.2-.10%
Transformer (base model) 273 38.1 3.3.10%%
Transformer (big) 28.4 41.8 2.3-10"

E/15/366

Conclusion

* They presented the Transformer, the first sequence
transduction model based entirely on attention, replacing the
recurrent layers most commonly used in encoder-decoder
architectures with multi-neaded self-attention.

* The Transformer can be trained significantly faster than
architectures based on recurrent or convolutional layers.

E/15/366

Thank You

