

NEURAL NETWORK READING GROUP

VQA: Visual Question Answering

Group No: 02

E/15/043 E/15/092 E/15/187 E/15/246

Bhagya T.P.Y. Ekanayake I.U. Kulanjith G.D. Opanayake R.L.

PRESENTATION OUTLINE KEY DISCUSSION POINTS

FYP | Group No: 02

Overview of the research Introduction Related work Dataset Dataset Analysis VAQ baseline and methods

IS THIS PAPER ?

Group No: 02 FYP |

Name

Publisher: 2015 IEEE International Conference on Computer Vision (ICCV)

: VQA: Visual Question Answering

- Authors : Stanislaw Antol
 - <u>Aishwarya Agrawal</u>
 - Jiasen Lu
 - Dhruv Batra
 - Devi Parikh
 - Margaret Mitchell
 - C. Lawrence Zitnick
- **Institutes:** Virginia Tech
 - Microsoft Research

THEY HAVE DONE ?

FYP | Group No: 02

- Open-ended Q&A

+ ?wh.? Answer V

 Complex reasoning & detailed understanding Images=0.25M Q=0.75 A=10.0M • Small Questions and Closed set of Answers ("yes" or "no" or small 1 to 3 words asnwers)

INTRODUCTION

Multi-discipline Artificial Intelligence

- Computer Vision (CV)
- Natural Language Processing (NLP)
- Knowledge Representation & Reasoning (KR)

What is Al-complete?

Combination of human understanding and computer technology

multi-modal knowledge + quantitative evaluation metric

What color are her eyes? What is the mustache made of?

Is this person expecting company? What is just under the tree?

INTRODUCTION

Type of Answers

- Open-ended answering
- Multiple-choice

Evaluation?

Number of questions it answers correctly

Datasets

MS COCO - 204,721 images abstract scene dataset - 50,000 scenes (3Qs)

RELATED WORK

Other VQA works

- M. Malinowski and M. Fritz (Small data set/ Small range of Questions)
- D. Geman and the team (A Visual Turing Test for Computer Vision Systems)
- K. Tu, M. Meng, M. W. Lee, T. E. Choe, and S. C. Zhu (Video VQA) By providing a text and a video answer

<u>Not open-ended, Not free-form Qs & As</u>

ns) ystems)

-aw	ay	
	-aw	e-away

1. Q: Is there a person in the blue region?	A: yes
2. Q: Is there a unique person in the blue region?	A: yes
(Label this person 1)	
3. Q: Is person 1 carrying something?	A: yes
4. Q: Is person 1 female?	A: yes
5. Q: Is person 1 walking on a sidewalk?	A: yes
6. Q: Is person 1 interacting with any other object?	A: no
:	
9. O: Is there a unique vehicle in the yellow region?	A: yes
(Label this vehicle 1)	
10. Q: Is vehicle 1 light-colored?	A: yes
11. Q: Is vehicle 1 moving?	A: no
12. Q: Is vehicle 1 parked and a car?	A: yes
:	
14. Q: Does vehicle 1 have exactly one visible tire?	A: no
15. Q: Is vehicle 1 interacting with any other object?	A: no
17. Q: Is there a unique person in the red region?	A: no
18. Q: Is there a unique person that is female in the red region?	A: no
19. Q: Is there a person that is standing still in the red region?	A: yes
20. Q: Is there a unique person standing still in the red region?	A: yes
(Label this person 2)	•
1	
23. Q: Is person 2 interacting with any other object?	A: yes
24. Q: Is person 1 taller than person 2?	A: amb
25. Q: Is person 1 closer (to the camera) than person 2?	A: no
26. Q: Is there a person in the red region?	A: yes
27. Q: Is there a unique person in the red region?	A: yes
(Label this person 3)	•
1	
36. Q: Is there an interaction between person 2 and person 3?	A: yes
37. O: Are person 2 and person 3 talking?	A: ves

multiple-choice answers.

grounding of questions
(understand text + image)

commonsense, knowledge, and complex reasoning Image captioning

Video captioning (Generate sentences to describe visual content.)

Detailed specific info

Evaluate image captioning

- coreference resolution
- generating referring expressions

- MS COCO 204,721 images
- Abstract scene dataset 50,000 scenes

VQA Dataset Collection

	Training and Validation set	Test set
Real Images (MS COCO)	123,287	81,434
Abstract Scene	30,000	20,000

- The MS COCO dataset already contains five single-sentence captions for all images.
- Abstract scene dataset
 - 20 "paperdoll" human models spanning genders, races, and ages with 8 different expressions
 - 100 objects and 31 animals in various poses

<u>Collecting Questions</u>

- Simple questions require low-level computer vision knowledge. ex- "What color is the cat?"
- Questions that require commonsense knowledge about the scene. ex- "What sound does the pictured animal make?"
- Three questions for each image/scene.
- Dataset contains over ~0.76M questions.

- Open-ended questions result in a diverse set of possible answers.
- 10 answers for each question from unique workers.

Testing

Accuracy metric: min((# humans that provided that answer)/3, 1)

 100% accuracy if at least 3 workers provided that exact answer.

VAQ Dataset Analysis

- Provide an analysis of the questions and answers in the VQA train dataset
 - To gain an understanding of the types of questions asked and answers provided following things can be done
 - Visualize the distribution of question types and answers
 - Explore how often the questions may be answered without the image using just common sense information
 - Analyze whether the information contained in an image caption is sufficient to answer the questions

Types of Questions

Abstract Scenes

Answers

Typical Answers

Lengths

Answers with Images

'Yes/No' and 'Number' Answers

• Subject Confidence

Inter-human Agreement

• CAPTIONS vs. QUESTIONS

COMMON SENSE of KNOWLEDGE

• Is the Image Necessary?

e.g. - What is the colour of a fire hydrant?

Dataset	Input	All	Yes/No	Number	Other
	Question	40.81	67.60	25.77	21.22
Real	Question + Caption*	57.47	78.97	39.68	44.41
	Question + Image	83.30	95.77	83.39	72.67
Abstract	Question	43.27	66.65	28.52	23.66
	Question + Caption*	54.34	74.70	41.19	40.18
	Question + Image	87.49	95.96	95.04	75.33

Baselines

- random : randomly choose an answer from the top 1K answers of the VQA train/val dataset
- prior ("yes") : always select the most popular answer ("yes") for both the open-ended and multiple-choice tasks.
- per Q-type prior :
 - For the open-ended task :- pick the most popular answer per question type For the multiple-choice task:- pick the answer that is most similar to the picked answer in the open-ended task(cosine similarity in Word2Vec feature space)
- k nearest neighbor

Methods

2-channel vision (image) + language (question) model

Image Channel: This channel provides an embedding for the image

The activations from the last hidden layer of VGGNet are used as 4096-dim image embedding.
 norm I: These are I2 normalized activations from the last hidden layer of VGGNet.

Question Channel: This channel provides an embedding for the question.

Bag-of-Words Question (BoW Q)
 LSTM Q
 deeper LSTM Q

Results

	Open-Ended		Multiple-Choice					
	All	Yes/No	Number	Other	All	Yes/No	Number	Other
prior ("yes")	29.66	70.81	00.39	01.15	29.66	70.81	00.39	01.15
per Q-type prior	37.54	71.03	35.77	09.38	39.45	71.02	35.86	13.34
nearest neighbor	42.70	71.89	24.36	21.94	48.49	71.94	26.00	33.56
BoW Q	48.09	75.66	36.70	27.14	53.68	75.71	37.05	38.64
I	28.13	64.01	00.42	03.77	30.53	69.87	00.45	03.76
BoW Q + I	52.64	75.55	33.67	37.37	58.97	75.59	34.35	50.33
LSTM Q	48.76	78.20	35.68	26.59	54.75	78.22	36.82	38.78
LSTM Q + I	53.74	78.94	35.24	36.42	57.17	78.95	35.80	43.41
deeper LSTM Q	50.39	78.41	34.68	30.03	55.88	78.45	35.91	41.13
deeper LSTM Q + norm I	57.75	80.50	36.77	43.08	62.70	80.52	38.22	53.01
Caption	26.70	65.50	02.03	03.86	28.29	69.79	02.06	03.82
BoW $Q + C$	54.70	75.82	40.12	42.56	59.85	75.89	41.16	52.53

TABLE 2: Accuracy of our methods for the open-ended and multiplechoice tasks on the VQA test-dev for real images. Q = Question, I = Image, C = Caption. (Caption and BoW Q + C results are on val). See text for details.

vision-alone model that completely ignores the question performs rather poorly

best model (deeper LSTM Q + norm I)

Conclusion

- Large data set is used providing more generalization to the VQA Task
- Data obtained from real persons
- Contribution to the idea of "Ai complete"
- For some applictions Task specific question may improve performance

THANK YOU!

