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What is a lost function ?
Why it’s so important ?
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Paper

Authors:
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun

Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet 
Classification
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What are Rectified Linear Unit 
(ReLU) ?

4E/15/363 Rashmi



Definition
Generic form of Rectifier Linear Function

5E/15/363 Rashmi



ReLU Vs PReLU

ReLU vs. PReLU. For PReLU, the coefficient of the negative 
part is not constant and is adaptively learned.
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Optimization
• Trained using backpropagation
• Optimized simultaneously with other layers
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Momentum        
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Adopt The Momentum Method When 
Updating     -        
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• For the channel-shared variant, the 
gradient of        
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Paper

Authors:
Diederik P. Kingma
Jimmy Lei Ba

ADAM: A METHOD FOR STOCHASTIC 
OPTIMIZATION
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 The name Adam is derived from adaptive moment estimation
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 Adam’s update rule is its careful choice of stepsizes

ADAM’S UPDATE RULE

Step size have two upper bounds Best Default values by the 
Authors 

𝝰 - 0.001

𝞫1 - 0.9 

𝞫2 - 0.999 

𝟄 - 10-8
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INITIALIZATION BIAS CORRECTION

Focused on the Initial steps of the algorithm

Initial steps m(t-1) and v(t-1) values are almost zero (m0 = 0, v0 = 0)

mt and vt are heavily biased to (1- 𝛃).gt on initial algorithm

Correcting the moving average by removing the bias from moving 
average
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Paper

Authors:
YANN LECUN
L´EON BOTTOU
YOSHUA BENGIO
PATRICK HAFFNER

Gradient Based Learning Applies to 
Document Recognition
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Maximum Likelihood 
Estimation Criterion
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Two Properties

● Allow the parameters of the RBF to adapt, has a trivial, but 
totally unacceptable, solution

● There is no competition between the classes.

E/15/048 Laksara 17



Improved Loss Function
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Back Propagation to compute the gradient of loss function
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Paper

Authors:
Pascal Vincent
Hugo Larochelle
Isabelle Lajoie
Yoshua Bengio
Pierre-Antoine Manzagol

Stacked Denoising Autoencoders: Learning 
Useful Representations in
a Deep Network with a Local Denoising 
Criterion
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L(x, z) = L2(x, z) =C(s2)||x−z||2 -----------> 1

Loss Function
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Paper

Authors:
Leon A. Gatys
Alexander S. Ecker
Matthias Bethge

Image Style Transfer Using Convolutional 
Neural Networks

Source :https://rn-unison.github.io/articulos/style_transfer.pdf
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Content Representation
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Style Representation
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Total Loss Function 
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Dropout as a Bayesian 
Approximation:

Representing Model Uncertainty in 
Deep Learning

Authors:
Yarin Gal
Zoubin Ghahramani
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 Dropout as a Bayesian Approximation
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PyTorch: An Imperative Style, 
High-Performance Deep Learning 

Library

Authors:
Adam Paszke
Sam Gross
Francisco Massa
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NN Implementation

• Neural network architecture can be easily 
implemented with PyTorch.

• Neural network models are usually represented as 
classes that compose individual layers.
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A custom layer used as a building block for a simple 
neural network
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Simplified training of a generative adversarial networks
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Thank You !!!
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