Loss Function Summary

Group 12 2021/03/07

> Laksara Chandrasiri Sewwandi Nisansala Sonali Prasadika Rashmi Ireshe

E/15/048 - e15048@eng.pdn.ac.lk

E/15/243 - e15243@eng.pdn.ac.lk

E/15/271 - e15271@eng.pdn.ac.lk

E/15/363 - r.i.thilakarathne@eng.pdn.ac.lk

What is a lost function ?

Why it's so important ?

Paper

Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification

Authors:

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun

What are Rectified Linear Unit (ReLU) ?

Definition

Generic form of Rectifier Linear Function

$$f(x_i) = \begin{cases} x_i, & \text{if } x_i > 0\\ a_i x_i, & \text{if } x_i \le 0 \end{cases}$$

ReLU: when $a_i = 0$ $f(x_i) = max(0, x_i)$

PReLU: when a_i is a learnable parameter $f(x_i) = max(0, x_i) + a_i min(0, x_i)$

LReLU: Leaky ReLU, when $a_i = 0$ $f(x_i) = max(0, x_i) + 0.01min(0, x_i)$

ReLU Vs PReLU

ReLU vs. PReLU. For PReLU, the coefficient of the negative part is not constant and is adaptively learned.

Optimization

Trained using backpropagation Optimized simultaneously with other layers

The gradient of a_i for one layer:

$$\frac{\partial \varepsilon}{\partial a_i} = \sum_{y_i} \frac{\partial \varepsilon}{\partial f(y_i)} \frac{\partial f(y_i)}{\partial a_i}$$

 $\partial \varepsilon$: Objective function

 $\frac{\partial \varepsilon}{\partial f(y_i)}$: Gradient propagated from the deeper layer

$$\frac{\partial f(y_i)}{\partial a_i} \quad : \text{Gradient of the activation} = \begin{cases} 0, \ if \ y_i > 0 \\ y_i, \ if \ y_i \le 0 \end{cases}$$

E/15/363 Rashmi

Momentum

SGD without momentum

Adopt The Momentum Method When Updating -

$$\Delta a_i := \mu \Delta a_i + \epsilon \frac{\partial \varepsilon}{\partial a_i}$$

 μ : Momentum

- ϵ : Learning Rate
- Initial a_i : 0.25

• For the channel-shared variant, the gradient of a_i

$$\frac{\partial \varepsilon}{\partial a} = \sum_{i} \sum_{y_i} \frac{\partial \varepsilon}{\partial f(y_i)} \frac{\partial f(y_i)}{\partial a}$$

 \sum_i : sums over all channels of the layer

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Authors: Diederik P. Kingma Jimmy Lei Ba

Paper

The name Adam is derived from adaptive moment estimation

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ $q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t / (1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

ADAM'S UPDATE RULE

Adam's update rule is its careful choice of stepsizes $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) Step size have two upper bounds Best Default values by the Authors $|\Delta_t| \leq \alpha \cdot (1-\beta_1)/\sqrt{1-\beta_2}$ in the case $(1-\beta_1) > \sqrt{1-\beta_2}$. **a** - 0.001 and $|\Delta_t| \leq \alpha$ **B**1 - 0.9 **B**2 - 0.999 *€* - 10⁻⁸

INITIALIZATION BIAS CORRECTION

Focused on the Initial steps of the algorithm

 $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate)

Initial steps m(t-1) and v(t-1) values are almost zero (m0 = 0, v0 = 0)

mt and vt are heavily biased to $(1 - \beta)$.gt on initial algorithm

 $\widehat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\widehat{v}_t \leftarrow v_t/(1 - \beta_2^t)$ (Compute bias-corrected second raw moment estimate)

Correcting the moving average by removing the bias from moving average

E/15/048 Laksara

Paper

Gradient Based Learning Applies to Document Recognition

Authors: YANN LECUN L'EON BOTTOU YOSHUA BENGIO PATRICK HAFFNER

Maximum Likelihood Estimation Criterion

 $E(W) = \frac{1}{P} \sum_{p=1}^{P} y_{D^p}(Z^p, W)$

Two Properties

- Allow the parameters of the RBF to adapt, has a trivial, but totally unacceptable, solution
- There is no competition between the classes.

Improved Loss Function

$$E(W) = \frac{1}{P} \sum_{p=1}^{P} \left(y_{D^p}(Z^p, W) + \log\left(e^{-j} + \sum_i e^{-y_i(Z^p, W)}\right) \right).$$

Back Propagation to compute the gradient of loss function

Fig. 19. Viterbi training GTN architecture for a character string recognizer based on HOS.

Stacked Denoising Autoencoders: Learning Useful Representations in

a Deep Network with a Local Denoising Criterion

Authors:

Paper

Pascal Vincent Hugo Larochelle Isabelle Lajoie Yoshua Bengio Pierre-Antoine Manzagol

Loss Function $L(\mathbf{x}, \mathbf{z}) \propto -\log p(\mathbf{x}|\mathbf{z}).$

$$L(x, z) = L_2(x, z) = C(s^2) ||x-z||^2 - ----> 1$$

E/15/048 Laksara

Paper

Image Style Transfer Using Convolutional Neural Networks

Style Image

Content Image

Authors: Leon A. Gatys Alexander S. Ecker Matthias Bethge

Content Representation

$$\begin{aligned} \mathcal{L}_{\text{content}}(\vec{p}, \vec{x}, l) &= \frac{1}{2} \sum_{i,j} \left(F_{ij}^l - P_{ij}^l \right)^2 \\ \frac{\partial \mathcal{L}_{\text{content}}}{\partial F_{ij}^l} &= \begin{cases} \left(F^l - P^l \right)_{ij} & \text{if } F_{ij}^l > 0 \\ 0 & \text{if } F_{ij}^l < 0 , \end{cases} \end{aligned}$$

23

Style Representation

$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}} \sum_{i,j} \left(G_{ij}^{l} - A_{ij}^{l}\right)^{2}$$

$$\mathcal{L}_{\text{style}}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_l E_l,$$

Total Loss Function

$\mathcal{L}_{\text{total}}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{\text{content}}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{\text{style}}(\vec{a}, \vec{x})$

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Authors: Yarin Gal Zoubin Ghahramani

Dropout as a Bayesian Approximation

$$\mathcal{L}_{\text{dropout}} := \frac{1}{N} \sum_{i=1}^{N} E(\mathbf{y}_i, \widehat{\mathbf{y}}_i) + \lambda \sum_{i=1}^{L} \left(||\mathbf{W}_i||_2^2 + ||\mathbf{b}_i||_2^2 \right)$$

PyTorch: An Imperative Style, High-Performance Deep Learning Library

Authors:

Adam Paszke Sam Gross Francisco Massa

NN Implementation

- Neural network architecture can be easily implemented with PyTorch.
- Neural network models are usually represented as classes that compose individual layers.

A custom layer used as a building block for a simple neural network

class LinearLayer(Module): def __init__(self, in_sz, out_sz): super().__init__() t1 = torch.randn(in_sz, out_sz) self.w = nn.Parameter(t1) t2 = torch.randn(out_sz) self.b = nn.Parameter(t2)

def forward(self, activations):
 t = torch.mm(activations, self.w)
 return t + self.b

```
class FullBasicModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(1, 128, 3)
        self.fc = LinearLayer(128, 10)
```

```
def forward(self, x):
    t1 = self.conv(x)
    t2 = nn.functional.relu(t1)
    t3 = self.fc(t1)
    return nn.functional.softmax(t3)
```

E/15/271 Sonali

E/15/271 Sonali

Simplified training of a generative adversarial networks

```
discriminator = create_discriminator()
generator = create_generator()
optimD = optim.Adam(discriminator.parameters())
optimG = optim.Adam(generator.parameters())
```

```
def step(real_sample):
```

```
# (1) Update Discriminator
errD_real = loss(discriminator(real_sample), real_label)
errD_real.backward()
fake = generator(get_noise())
errD_fake = loss(discriminator(fake.detach(), fake_label)
errD_fake.backward()
optimD.step()
# (2) Update Generator
errG = loss(discriminator(fake), real_label)
errG.backward()
optimG.step()
```


References

- 1) Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, and Léon Bottou. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion." *Journal of machine learning research* 11, no. 12 (2010).
- 2) LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86, no. 11 (1998): 2278-2324.
- 3) Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "Image style transfer using convolutional neural networks." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2414-2423. 2016.
- 4) Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen et al. "Pytorch: An imperative style, high-performance deep learning library." *arXiv preprint arXiv:1912.01703* (2019).
- 5) Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." In *international conference on machine learning*, pp. 1050-1059. PMLR, 2016.
- 6) Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).
- 7) He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE international conference on computer vision, pp. 1026-1034. 2015.

Thank You !!!