
1

UNIVERSITY OF PERADENIYA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

PROJECT PLAN DOCUMENT

FLOOD DETECTION AND

SAFETY PREDICTION SYSTEM
THROUGH WATER LEVEL AND VELOCITY MONITORING

GROUP 09

E/14/080

E/14/228

E/14/240

2

TABLE OF CONTENTS

 Page No

Table of Figures 4

Abstract 5

Related Work 6

Background Research 7

Project Overview 8

Technical Note

Hardware Design 9

 Power supply 10

Circuit diagram 11

Ultra Sonic Sensor 12-13

Flow Rate Sensor 14-15

Arduino UNO 16

Network Design 17

Technologies Used 18

Technologies used in web and app mobile app 19

APIs Used 20-21

Interface Design 22

Database Design 23

Network Security 24

Budget 25

Timeline 26

3

Testing 27

 Hardware Testing 27-32

 Network Testing 33-38

 Security Testing 39-40

User Manual 41

 Web Interface 41-47

 Mobile Application 48-50

Reference for further Implementation 51

4

TABLE OF FIGURES

 Page No

Figure 1:Project Overview 6

Figure 2:Hardware Design 7

Figure 3:Power Supply 8

Figure 4: Circuit Diagram 9

Figure 5: Working of an ultra sonic sensor 11

Figure 6: HC SR04 connected to an arduino UNO 11

Figure 7: Flow Rate Sensor 13

Figure 8: Layout of an A7 GSM module 14

Figure 9: Network Overview 15

Figure 10: Multiple nodes connecting to the central server 15

Figure 11 :MVC architecture of laravel framework 16

Figure 12: Reasons for choosing ionic 17

Figure 13: Interface Designs 20

Figure 14: Database Design 21

Figure 15: Theory behind MAC protocol 22

Figure 16: Apparatus to test the ultra sonic sensor 27

Figure 17 : Exepected value vs practical values 29

Figure 18: Error with regard to height measurement 29

Figure 19: Expected value vs practical values 32

Figure 20: Error with regard to flow rate sensor 32

Figure 21: Time taken to process requests 35

Figure 22:Total round trip time 37

Table 1:Budget 23

Table 2:Timeline 24

5

 Abstract

This system would monitor the status of rivers in country in real time
and would help to prevent the dangers associated with water flow of
river bodies of the country. This system is able to detect a change in the
usual water level and speed and would therefore is able to give
notifications about the safety regarding that particular water body. The
system has a sensing circuit connected to a microcontroller which sense
and outputs the current water level and velocity of the surface in which
the signals are transmitted to a main server where the data is analyzed
by comparing with previous data. The current details regarding the
water bodies could is accessible to the public through a web interface
and a mobile application.

6

Related work

Background work:
http://www.irrigation.gov.lk/index.php?option=com_riverdata&Itemid
=266&lang=en
Currently, this site gives an update of the river status of Sri Lanka.
However this system is based on manually collected data and is
updated only once per day. By constantly keeping track of this site we
found that there are certain times that the system doesn’t output any
data at all. This system is sufficient to get rough details about the water
level of a river body but this won’t clearly serve any help at detecting a
risky situation prior to the occurring of an event.
Since our system is based on data collected through sensors, human
force used in collecting this data manually, informing the collected data
to the central office, updating these data and keeping track of them
would be minimized to a larger extent through our system. Our system
would be more secure, efficient and less erroneous compared with the
existing manual procedure and system.

http://www.irrigation.gov.lk/index.php?option=com_riverdata&Itemid=266&lang=en
http://www.irrigation.gov.lk/index.php?option=com_riverdata&Itemid=266&lang=en

7

Background Research

The flood conditions can be monitored through the water level of a
river and the threshold values vary from one river to river. These
threshold values should be obtained from former experiences and pre-
calculated data.

The drowning conditions may differ with the velocity of flowing water.
Although they too differ with many other factors water velocity alone
would be a good measure as an alerting signal to prevent any drowning
situation. An important factor to remember is that most fatalities occur
in moderate water levels and the water velocities may not seem fatal as
they actually are. Therefore concluding whether a water way is safe
enough or not merely by eye sight may cause destructive results.
Instead a system which monitor both water level and the velocity
would be able to predict the dangers and safety measures more
effectively.

In waist deep water it takes roughly 2-2.5 feet per second to push a
grown man over while in chest deep water it would only take 1-1.5 feet
per second. According to researchers about 71% of the fatalities occur
in water ways that are between 3.4 feet to 5.2feet. There’s a model
called drowning trap in which it states that the depth of the
water,velocity and the deceptiveness of the velocity are the three
major reasons that are responsible for drowning.

8

Project Overview

Figure1::Project Overview

9

Hardware Design

The hardware part containing the microcontroller,gsm module and the
batteries are embedded in a box where it’s top is enclosed by the solar
panels.The ultra sonic sensor is attached to the bottom of the box. This
part should be fixed to a bridge above the water surface. A tube
extrudes from this part until it reaches below the surface of water. The
flow rate sensor is attached to the bottom end of the tube in which it is
connected to the arduino board. To get better results the box should be
fixed about 1m above from the surface of the water.

Figure 2:Hardware Design

10

Power Supply

Figure 3:Power Supply

Power supplied by the solar panels=3 x 4.5 =13.5V
Power supplied by the batteries= 3 x 3.7V= 11.1 V

2 L7805CV Linear Voltage Regulators = 10V

R1 = 1k𝛀

Capacitor =2200µF

11

Circuit Diagram

Figure 4: Circuit Diagram

12

Ultra sonic sensor(HC SR04)

To measure the water level we are using ultra sonic sensors which
should be implemented above the water body and the sensor would
output the distance from that given body to the surface of the water.
Through this we could check whether there’s a significant change in the
water level by comparing this data with the pre-collected data. There
were other sensing methods to get the water level but we chose ultra-
sonic sensors as the best due to its accuracy when compared with other
methods and its easy-maintainability since the components do not get
in touch with the water (no rusting, less depreciation).

limitations
 The height from the surface to the fixed point can be obtained

only with an accuracy of +-1cm. But since we do not need the
minute changes of the water level and measure only the drastic
changes, this error could be tolerated. With time, there might be
a possibility to have a moisture layer on the face of the sensors
and that’d change the density between the surface and might
lead to erroneous results.

 Power Supply :+5V DC
 Quiescent Current : <2mA
 Working Current: 15mA
 Effectual Angle: <15°
 Ranging Distance : 2cm – 400 cm/1″ – 13ft
 Resolution : 0.3 cm
 Measuring Angle: 30 degree
 Trigger Input Pulse width: 10uS

13

Figure 5: Working of an ultra sonic sensor

Figure 6: HC SR04 connected to an arduino UNO

14

Flow Rate Sensor

The flow rate sensor has to be emerged somewhere below the surface
(according to the principles of hydro physics as at this point a more
accurate measurement regarding flow rate of a river could be obtained)
The flow meter works on the principle of the Hall effect. According to
the Hall effect, a voltage difference is induced in a conductor transverse
to the electric current and the magnetic field perpendicular to it. Here,
the Hall effect is utilized in the flow meter using a small fan/propeller-
shaped rotor, which is placed in the path of the liquid flowing. The
liquid pushes against the fins of the rotor, causing it to rotate. The shaft
of the rotor is connected to a Hall effect sensor. It is an arrangement of
a current flowing coil and a magnet connected to the shaft of the rotor,
thus a voltage/pulse is induced as this rotor rotates. In this flow meter,
for every liter of liquid passing through it per minute, it outputs about
4.5 pulses. This is due to the changing magnetic field caused by the
magnet attached to the rotor shaft as seen in the picture below. We
measure the number of pulses using a micro-controller.

Limitations

 Since the flow rate is embedded within a tube, the friction and the
cohesive forces exerted by the walls of the tube would hinder
obtaining the exact flow rate at the point. But since the velocity of
a flowing water body is not uniform, there’s no point in trying to
get the exact velocity. We can position the flow rate sensor in a
place the maximum velocity could be measured (somewhere just
beneath the surface) and that would be effective than getting the
exact value since this measurement is going to be an average
estimation of the velocity.

15

 Working Voltage: 5 to 18V DC (min tested working voltage 4.5V)
 Max current draw: 15mA @ 5V
 Output Type: 5V TTL
 Working Flow Rate: 1 to 30 Liters/Minute

Figure 7: Flow Rate Sensor

16

Arduino UNO Board

We chose Arduino UNO as the micro-controller because of its moderate
price over other micro-controllers and because it serves our purpose.
We just need to get the output signals of our sensors and some simple
computations, so arduino UNO would suffice. (we are planning to
prototype only one node, but if multiple nodes had to be built we could
also go with arduino nano as it is much cheaper)

A7 GSM Module
We’d be also using an A7 GSM module to capture the signals from the
micro-controller and to transfer these signals to the centralized server.

 Working voltage : 3.3V-4.2V
 Power voltage: >3.4V

Figure 8: Layout of an A7 GSM module

17

 Network Design

Figure 9: Network Overview

Data from multiple nodes are sent to the centralized server, in which
database and other APIs are embedded within.

Figure 10: Multiple nodes connecting to the central server

18

Technologies

Laravel is basically a php framework.We mainly used laravel framework
to create our application as it provides many features that are really
helpful in building a real time notification system.

Some of the features to note down are ;

 Simple,fast routing engine.
 Powerful dependency injection container .
 Multiple back-ends for session and cache storage.
 Expressive, intuitive database ORM.
 Database agnostic schema migrations.
 Robust background job processing.
 Real-time event broadcasting.

Laravel also provides an attractive platform for MVC architecture.
1. Controller receives data from the GSM module
2. Controller requests data from model
3. Model returns data
4. Controller processes data
5. View receives data
6. Generated view is returned
7. Generated view is sent to the browser as a response.

Figure 11 :MVC architecture of laravel framework

19

Technologies used in the web application

Technologies used in Mobile Application

We mainly used the ionic framework as it is compatible with both
android and ios.

Front End

HTML

CSS –

Bootstrap

Java Script

 Vue.js

 jQuery

 Ajax

Back End

Php(laravel

framework)

MySQL

Figure 12: Reasons for choosing ionic

20

Application Platform Interfaces (APIs) Used

RESTful API (Laravel)

It is an application program interface that uses HTTP requests to GET,
PUT, POST and DELETE data.
A RESTful API -- also referred to as a RESTful web service -- is based on
representational state transfer technology, an architectural style.One of
the key advantages of REST APIs is that they provide a great deal of
flexibility. Data is not tied to resources or methods, so REST can handle
multiple types of calls, return different data formats and even change
structurally with the correct implementation of hypermedia.

Pusher API

Pusher is a simple hosted API for quickly, easily and securely adding real
time bi-directional functionality via WebSockets to web and mobile
apps, or any other Internet connected device. Pusher offers a rich suite
of libraries that can be used within our applications. This makes the
real time notification system much easier.

Google Maps API

Google Maps API allows display the location of each location of nodes
in our web application and also the user can search nodes according to
his/her location.

21

We use Postman to test and manage our APIs.Reasons for using
postman are;

1. It has an easy to use interface
2. It’s automation capabilities - It helps to automate the process of

making API requests and testing API responses, allowing
developers to establish a very efficient workflow

3. History/Auto complete
4. Easy organization - Postman allows API calls to be organized into

groups that can be saved as “collections.” Folders can be added to
collections allowing API calls to be further organized into sub-
collections. Collections and folders are especially useful when
consuming many APIs and regularly testing a large number of API
calls. Collections make it possible for developers to find and reuse
specific API requests quickly.

5. Response viewer
6. Test Editor and runner

22

Interface Design

Figure 13: Interface Designs

23

Database Design

Figure14: Database Design

24

Network Security

Since our system doesn’t contain any sensitive data,and is intended to
be available to the public ,encrypting the data would not serve any
purpose. Instead we are focusing on taking suitable precautions against
any 3rd party manipulating and corrupting our data. To overcome this
issue we are mainly focusing on 3 aspects.

 Activating an SSL certificate for the web interface

 User Authentication

 Authenticating the message from the microcontroller using
message authentication code(MAC)

MAC
A message authentication code (often called MAC) is a block of a few
bytes that is used to authenticate a message. The receiver can check
this block and be sure that the message hasn't been modified by the
third party

Figure 15: Theory behind MAC protocol

25

Budget

Table 1:Budget

26

Timeline
Table 2:Timeline

27

Testing

The testing was done in three main streams hardware testing,

network testing and security testing. After being tested separately

all the components were integrated and tested again for their

proper functionality.

Hardware testing

Ultrasonic sensor

Figure 56:Apparatus to test the ultra sonic sensor

A set up was implemented as shown in the above diagram. The

height from the ultra-sonic sensor to the surface of water was

measured by a meter ruler. Then this value was compared with the

value given as an output by the arduino UNO board whivh is

connected to the ultrasonic sensor. Three values were taken for

each height value and the mean was calculated as the final value to

minimize the experimental errors.

28

Absolute value of maximum error=4cm

Absolute value of minimum error=0

Error at the end points were higher than the middle points. So

when fixing the apparatus it should be fixed at a height of about

1m above the water surface.

29

Figure 17:Exepected value vs practical values

Figure 18:Error with regard to height measurements

30

Flow Rate Sensor

The flow rate sensor was measured by comparing the values

outputted by the flow rate sensor we used with a flow meter of a

higher accuracy. Both flow rate sensor and the flow meter were

emerged in a stream and the values were checked in several places

with different velocities. The flow meter had an accuracy of +-5%

which was higher than the accuracy of the flow rate sensor we

used, which according to the manufacture’s guidelines were +-

10%. The practical values we obtained also gave an accuracy about

+-10%.

31

Flow Rate Sensor

Expected Value(ml/s) Obtained Value(ml/s) Error

50 52 2

55.5 54 -1.5

51 52 1

54 53 -1

78 77 -1

79 78 -1

80.1 80 -0.1

80.5 82 1.5

125 125 0

127.5 128 0.5

129 129 0

135 134 -1

221.5 220 -1.5

223 222 -1

225 225 0

228 228 0

352 352 0

351.5 353 1.5

354 356 2

356.5 358 1.5

458 464 6

459 465 6

500 504 4

502.5 505 2.5

32

Figure 20:Error of the flow rate sensor

Maximum error =6 ml/s

Minimum error = 0

Figure 19:Expected values vs practical values

33

 Network testing

The central server is hosted at https://flood.codechilli.lk and

several tests were used to test whether the networking aspect was

functioning as expected. We used the postman API to test the

condition of our network.

Test1

We sent a number of get requests to our server to calculate how

much time it took to update the website once a request was sent

to the server.

Test Case Time taken(ms)

1 271

2 546

3 428

4 1654

5 601

6 454

7 4518

8 840

9 1302

10 1354

11 493

12 1382

13 924

14 610

15 229

16 523

17 1494

18 224

19 356

20 294

https://flood.codechilli.lk/

34

21 3324

22 298

23 1846

24 280

25 388

26 371

27 388

28 844

29 1470

30 351

31 247

32 602

33 441

34 232

35 329

36 334

37 336

38 365

39 335

40 743

41 729

42 415

43 500

44 257

45 233

46 434

47 415

48 727

49 835

50 264

35

Figure 21:time taken to process requests

Maximum value=4518 ms
Minimum value =224 ms
Range =4294ms
Average time taken to process a request : 736.6ms
Standard Deviation : 785.90ms

36

Test 2

We conducted another test to experiment the total round trip time (the

time taken to transmit data from a node to the server plus the time

taken to update the server) to measure the efficiency of our service.

Test Case time(ms)

1 61200

2 72000

3 79260

4 114480

5 70020

6 87360

7 73800

8 58800

9 94020

10 73800

11 70680

12 60720

13 61920

14 59760

15 69000

16 53400

17 47340

18 63360

19 72000

20 68700

37

Figure 22:Total round trip time

Maximum time=114480ms
Minimu time=53400ms
Range=61080ms
Standard Deviation : 81.32s
Average : 69.7s

38

Test 3

In order to measure the network traffic we used the same API to

constantly send 20 requests each 5 minutes and check whether any

problems occur. Here, we observed all the packets were transferred

without any issue except for two occasions. Later we found out that the

two occasions were due to a network error in the local machine and

was no effect in the system.

39

Security Testing

Test 1

We have used the Message Authentication Code (MAC) to prevent any

third party manipulating the data in a disruptive manner. There’s a mac

value produced at the node and that value is only updated in the server

side if and only if the mac value produced at the server side is

compatible with the mac value from the node.

We have used a secret key and anyone who is trying to decrypt the mac

code with the secret key may have to run 2^97 queries only with a

success probability of 0.87%. This proves that decrypting the mac code

would be hardly possible thus ensuring the security aspect and the

reliability. The test cases we conducted proved to be of high reliability

and all of the test cases passed.

40

Test 2

The application had two interfaces one being the public interface and

the other one being the admin interfaces. Only the administrators are

authenticated to do the modifications to the data. The public can only

view the data. We have authenticated the administrative staff who are

eligible to do certain changes and we have tested our application for

several times to check whether this feature works correctly. The

application showed to give the expected results in every test case.

41

User manual

Web Interface

The public interface can be accessed by anyone at

https://flood.codechilli.lk/

https://flood.codechilli.lk/

42

Once a person is accessed to this page he/she can view the water levels

of different rivers and water bodies through Water Level tab on the top

of the page.

43

If a user wants to view more details about a specific station (water

body) he/she can click on the station name and find more details.

44

You can also view the overall map from the view map tab on the top of

the home page. In the map, the water bodies that are safe would be

shown in blue while the flood conditioned locations are shown in red

color.

45

Only the administrators that are authenticated can make modifications

in the public interface. If you are already authenticated as an admin

https://flood.codechilli.lk/login and the following page will pop up.

If the correct credentials are supplied, a new web page will load.

https://flood.codechilli.lk/login

46

An admin can create new nodes using the create node tab.

47

An admin can also make changes in a particular node using EDIT NODE

and DELETE NODE.

48

Mobile Application

Step 1 Step 2

49

Step 3 Step 4

50

Result

51

Reference for further Implementation

Source code for the web interface can be found at

https://github.com/DhanushkiMapitigama/Unified-Project.git

Cloning a laravel project

 Clone your project

 Go to the folder application using cd command on your cmd or terminal

 Run composer install on your cmd or terminal

 Copy .env.example file to .env on the root folder. You can type copy .env.example .env if

using command prompt Windows or cp .env.example .env if using terminal, Ubuntu

 Open your .env file and change the database name (DB_DATABASE) to whatever you have,

username (DB_USERNAME) and password (DB_PASSWORD) field correspond to your configuration.

By default, the username is root and you can leave the password field empty. (This is for

Xampp)

By default, the username is root and password is also root. (This is for Lamp)

 Run php artisan key:generate

 Run php artisan migrate

 Run php artisan serve

 Go to localhost:8000

More details of how to clone a laravel project can be found at https://devmarketer.io/learn/setup-

laravel-project-cloned-github-com/

The source code for the mobile application can be found at

https://github.com/DhanushkiMapitigama/fds-app/tree/development

The source code to be inserted to the arduino board is found at

https://github.com/DhanushkiMapitigama/Unified-

Project/tree/shanakamunasinghe-patch-3/test2

The codes used for test cases

Flow rate sensor : https://github.com/DhanushkiMapitigama/Unified-

Project/blob/shanakamunasinghe-patch-3/FlowRateSensor.ino

Ultrasonic sensor : https://github.com/DhanushkiMapitigama/Unified-

Project/tree/shanakamunasinghe-patch-3/level_meter

Source%20code%20for%20the%20web%20interface%20can%20be%20found%20at%20https:/github.com/DhanushkiMapitigama/Unified-Project.git
Source%20code%20for%20the%20web%20interface%20can%20be%20found%20at%20https:/github.com/DhanushkiMapitigama/Unified-Project.git
http://localhost:8000/
https://devmarketer.io/learn/setup-laravel-project-cloned-github-com/
https://devmarketer.io/learn/setup-laravel-project-cloned-github-com/
https://github.com/DhanushkiMapitigama/fds-app/tree/development
https://github.com/DhanushkiMapitigama/Unified-Project/tree/shanakamunasinghe-patch-3/test2
https://github.com/DhanushkiMapitigama/Unified-Project/tree/shanakamunasinghe-patch-3/test2
https://github.com/DhanushkiMapitigama/Unified-Project/blob/shanakamunasinghe-patch-3/FlowRateSensor.ino
https://github.com/DhanushkiMapitigama/Unified-Project/blob/shanakamunasinghe-patch-3/FlowRateSensor.ino

52

