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Abstract

Nanopore sequencing can be taken as one of the most prominent technologies being

developed as a cheap and fast alternative to conventional sequencing methods, espe-

cially in the sequencing of polynucleotides in the form of DNA or RNA. Applications

involved in direct contact with genotyping and point-of-care diagnostics require efficient

bioinformatics algorithms to analyze the raw nanopore signal data.

To perform these requirements efficiently, the utilization of an optimized bioinformatics

algorithm causes a significant change in the field of nanopore sequencing. Adaptive

Banded Event Alignment(ABEA) is a commonly used bioinformatics algorithm. The

original implementation of ABEA in the Nanopolish software package has already been

parallelized and optimized for GPUs(named f5c). It performs efficiently on heterogeneous

CPU-GPU architectures.

Even though the ABEA algorithm has been fine-tuned to exploit architectural features

in GPUs, the hardware on such generic processors cannot be modified. It will be a

tremendous achievement if customized hardware performs with the optimized ABEA

algorithm to improve the overall system.

Currently, one of the growing trends in the FPGA domain is OpenCL. OpenCL allows

writing programs in high-level languages such as C. Then, the programs can be converted

by underlying layers to run on heterogeneous systems consisting of CPU, GPU, and

FPGA.

In this work, We implemented a re-engineered version of ABEA which enables specifi-

cally to run on FPGAs with the usage of OpenCL. We tried to experimentally identify

and adapt FPGA optimization techniques to achieve better performance. Eventually we

were able to archive twice-better-power-consumption advantage by comparing with the

previous implementation. For the Performance evaluation, we presented observations of

how both Single-Work-Item kernel and NDRange kernel implementations are performed

with respect to different datasets and read length ranges. With the use of OpenCL

Profiler, the profiling operations on both memory objects and kernels are discussed in

the Results and Analysis section.
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Chapter 1

Introduction

In the field of biology, it has been facing a rapid development in data from many types

of research in the same way as other scientific directions. Nowadays, vast data volumes

related to biomedical fields are generated in sequencing centers, analytical facilities, and

some individual laboratories. Thus, obtaining the relevant information within a particular

time is a challenging task faced by the scientific community.

Genomic medicine is a developing medical discipline that incorporates using genomic

information. In applications like clinical diagnosis, rapid species identification, and

advanced therapies, genomics plays a considerable contribution to the biomedical research

field. Genomic medicine includes early diagnosis, more efficient disease prevention and

management, and the reduction of medication side-effects dependent on gene signatures.

Therefore, new methods of developing low-cost completed genome DNA sequences play a

massive role in genomics’ future.

Nowadays, the focus of genome projects has moved from data production to data

analysis. The central challenge is how to analyze such an amount of data rapidly and

accurately. The modern sequencing methods generate data such that traditional analysis

tools are not able to cope with them. Therefore, DNA analysis algorithms have to

be implemented on hardware accelerators to achieve the expectations efficiently and

effectively.
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1.1 Background

1.1.1 Nanopore Sequencing

DNA can be described as a molecule that encodes the genetic instruction of a life. In

other words, it is the blueprint of life. Therefore, the technology that does the accurate

and rapid DNA sequencing have deeper impacts on human diseases and personalized

medicine. Existing Non-nanopore DNA sequencing technologies require a considerable

amount of sample planning and complex algorithms for data processing[3].

As they have disadvantages such as poor throughput, high cost, and limited read

length as a result of the development of three generations, DNA sequencing technology is

now using single molecular nanopore technology. The key benefits of nanopores include

label-free, ultra-long readings, high throughput, and low material requirements. Any of

these dramatically simplifies the experimental process and can be used for DNA sequencing

applications effectively. Moreover, nanopores as single-molecule sensing technologies

have great potential uses for the study of ions, DNA, RNA, peptides, proteins, drugs,

polymers, and macromolecules[4][5].

Nanopore technologies can be broadly classified into two categories as biological and

solid-state. Although Biological nanopores have been widely used in single-molecule

detection, disease diagnosis, and DNA sequencing, the included protein pores have a

constant pore size, profile, and lack of stability[6]. But it has been shown that solid-state

nanopores have many superior advantages over their biological counterparts, such as

chemical, thermal, and mechanical stability, size adjustability, and integration[7].

However, real-time DNA sequencing is currently a major challenge[8]. However, the

new generation (third generation) of sequencing technology will produce ultra-long DNA

‘reading’ from single molecules in real-time. For example, Oxford nanopore Technologies

(ONT) produces a pocket-sized sequencing device called MinION, a relatively affordable

and compact sequencing device capable of sequencing in remote areas with no network

access even at the point of treatment[1].

While the current is sampled and digitized, ONT sequencing devices measure DNA

strand passing through biological nanopores composed of recombinant proteins[9]. But,

there can be some stochastic noise due to several factors such as homopolymers (same

base repeating multiple times), contaminants in the sample, entanglements of long DNA

strands, and depletion of ions in the measured signal[10].

Furthermore, the signal can be warped due to the variations of the DNA strand’s

movement speed through the pore. Then, the conversion from the raw signal to the

character representation is done using artificial neural networks, generating a typical
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accuracy ą90% for single reads[11]. This conversion is called base-calling, and the

base-callers are the software tools that perform the conversion[9].

The particular sequence is aligned to a reference sequence which consists of a previously

generated consensus sequence once the nanopore read is base-called. Here the sequence

alignment takes in global optimization algorithms to detect the most similar target and

to compare the differences between sequences. Moreover, the error-rate of nanopore

sequencing is relatively high when it is compared to biologically occurring variation in

individual genomes. Therefore, the derived sequence alignments are distinct in nature

from previous sequencing technologies.

After that, the ‘polishing’ downstream processing step is taken into place. It utilizes

both the base-space alignment results and the raw signal. Additionally, in order to recover

the lost biological information during base-calling, it reuses the raw signal. This polishing

step is used to correct errors during base-calling or to detect modified nucleotide bases

such as DNA methylation.

However, it has shown that identification of genetic variants can be increased up to an

accuracy of more than 99% by using raw signal data by performing multiple overlapping

reads[12][13]. Alternatively, since it reuses the raw signal data, the downstream analysis

could correct for base-calling errors as well.

On the other hand, during the base-calling, some critical biological information is lost.

Some baseline models cannot handle methylated data because either they are trained

on unmethylated sequences, or they abstract non-canonical bases. Which means these

molecules may be classified as unmethylated bases erroneously. Here, the process of

identifying methylation is known as methylation calling.

1.1.2 Methylation Calling

Nanopore sequencing offers real-time analysis at the expense of a higher error rate. It is

predominantly caused by the conversion process of the raw signal into DNA bases via

probabilistic models, and it is referred to as base-calling. To overcome base-calling errors,

the raw signal can be revisited a posteriori.

The raw signal can be re-examined a posteriori to resolve base-calling errors. Such

polishing could be accurate by aligning the raw signal with a biological reference sequence

for base-calling errors and thus detect raw signal idiosyncrasies by comparing observed

signal rates with predicted levels at all associated positions[14].

As mentioned earlier, base calling causes essential biological information to be lost.

Some base-calling models cannot handle methylated data either because they are trained in

non-methylated sequences or because non-canonical bases are abstracted. Such molecules
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can also be wrongly marked as non-methylated bases. The methylation calling means

the process of identifying methylation[14].

Three steps are to be followed for a given read under methylation calling and steps are

performed for each reading in the data set,

1. Event detection

2. Signal-space alignment

3. Hidden Markov Model (HMM) profiling

Event detection is the time series segmentation of the raw signal based on sudden

signal level changes. Each of these segment is called event and it is denoted by mean

(µx), standard deviation (σx) and the duration of the raw signal samples (nx). Events

are aligned to a generic k-mer model signal to obtain a better match between events and

the raw signal. Nanopolish software package accomplishes this task using the Adaptive

Banded Event Alignment (ABEA) algorithm. The alignment between the events and

the k-mers in a reference genome can be subjected to Hidden Markov Model (HMM)

profiling to identify if a given base is methylated or not[1].

Fig. 1.1 An Example of k-mer Model[1]
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1.1.3 Adaptive Banded Event Alignment Algorithm (ABEA)

Dynamic programming (DP) is used to find out the optimal alignment between two

biological sequences. Famous algorithms that use DP are Needleman–Wunsch (NW)

algorithm and the Smith-Waterman (SW) algorithm. They are of quadratic time and

space complexity. NW and SW have been utilized extensively to fine-tune the high-quality

DNA sequences. Nonetheless, due to their prolonged time consumption, many heuristic

changes have been made without losing efficiency to increase alignment speed.

Figure 1.2 depicts the graphical representation of DP table of the SW algorithm

performing alignment between a target sequence (6 bases long t0 to t5) and query sequence

(8 bases long q0 to q7). Initial values are set to zero. Then, S(i,j) – scores are computer

per each sell based on a scoring scheme. Finally, trace back starting from highest score

sell and ending from 0 score cell (red color path of arrows).

Fig. 1.2 Optimal Sequence Alignment[1]
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A modern computer can quickly handle a single alignment. However, when the

number of alignments that need to be processed increases, the computational complexity

also increases. Therefore, to reduce the number of computations, banded alignment

approaches were introduced. Nanopore gives out long reads that have 100 to 1000

times the length of a short read that are not appropriate for small static bands. The

identification of long indels is a significant benefit of long readings. The strong demand

for bandwidth leads to exceptionally high processing times when millions of readings are

aligned.

Further, we can assume that sequences aligned to each other are essentially similar.

Thus the alignment (red color path of arrows) should lie close to the left diagonal.

Therefore, to reduce the number of computations, only the cells around the left diagonal

are considered. This banded alignment approach is shown in Figure 1.3 with a band

width of 4.

Fig. 1.3 Banded Sequence Alignment (band-width=4)[1]
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The banded alignment approach is mostly suitable for short reads than long reads

generated by Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio).

Because both ONT and PacBio generated, reads have a length 100 to 1000 times bigger

than short reads, and they are much noisier. Therefore, such small bands are not suitable

because the alignment path can deviate significantly from the left diagonal due to high

errors.

In 2017, a heuristic algorithm Suzuki-Kasahara (SK)[15] was implemented to increase

the processing speed. SK uses an adaptive band scheme that allows a shorter band to

accommodate such kind of alignment. However, the band is no longer enough for the

whole alignment to lead to an unsatisfactory alignment. It is overcome with the use of

an adaptive unit as shown in Figure 1.4.

Fig. 1.4 Adaptive Banded Sequence Alignment[1]

Edited version of the SK algorithm is used in Nanopolish for event-space alignment

and it is called ABEA 3.1.
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1.1.4 OpenCL for FPGA Architecture and Programming

During the past couple of years, GPUs have been frequently utilized in supercomputers

to accelerate various data processing types. However, the high-power usage of these

devices remains a bottleneck in deploying large supercomputers. For this reason, Field-

Programmable Gate Arrays (FPGA) are a promising alternative to GPUs specifically

because of their relatively low power consumption.

The most common approach to achieve better performance is by assigning the compu-

tationally intensive task to hardware and exploiting the parallelism in the algorithm[16].

Field Programmable Gate Arrays (FPGAs) have proved an effective platform for the

implementation of these algorithms. FPGAs are in-between general-purpose processors

and ASICs on the spectrum of processing elements[17].

Historically, hardware developers used hardware description languages (HDL), also

known as High-level programming environments like Verilog and VHDL, to program

hardware at register transfer level (RTL)[18]. When the application gets large, this

approach can be complicated and frustrating even with a proper implementation structure.

The time to design, verify, and optimize (time-to-market) an application using RTL is

significant and requires previous hardware design experience, which implies increased

development cost.

This reason forced developers to come up with high-level synthesis (HLS) tools like

Intel OpenCL (Open Computing Language) HLS and Xilinx Vivado HLS[19]. These

tools provide the ability to write applications in high-level programming languages

such as C/C++ and SystemC and then generate the RTL design of the program to

support hardware like FPGAs. HLS reduces the time-to-market and increases developers’

productivity by taking the overhead of deciding the microarchitectural detail of the

FPGA design.

In[20], it has been shown that the OpenCL computing paradigm is a viable design

approach for high-performance applications on FPGAs, and it is a framework for parallel

programming and includes a language, API, libraries, and a runtime system to support

software development. OpenCL is developed to allow parallel computation to accelerate,

addressing a wide range of platforms[21]. The programs written in OpenCL can then be

converted to RTL designs to support a wide variety of platforms. An OpenCL platform

comprises one host and one or many devices, which are computed units that may consist

of multiple processing elements (PEs).

OpenCL platform model[2], an abstract hardware model for devices (Figure 1.5). One

platform has a Host and one or more devices connected to the host. Each Device may

have multiple compute units with multiple processing elements.
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Fig. 1.5 OpenCL Platform Model

The host program performs the following tasks

• Allocate memory on the FPGA

• Transfer the input data from the host to the FPGA

• Execute the kernel

• Transfer the output results from the FPGA to the host

• Release the allocated memory

Figure 1.6 illustrates the schematic diagram of the Intel FPGA SDK for the OpenCL

programming model.

The execution model (Figure 1.7) shows the communication mechanism between

the host and devices in the context environment. The host submits work to devices

and manages the workload in the context using the OpenCL API platform layer. The

command queue is the communication media that the host uses to read, write, and

execute.
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Fig. 1.6 Schematic diagram of the Intel FPGA SDK for OpenCL programming model

OpenCL for FPGA uses two types of kernels, namely ‘Single work item’ kernels and

‘NDRange kernels’[2] (Figure 1.8). There is only one work item in a single work item

kernel, while the NDRange kernel has multiple work items. The Single work item kernel

shares data among multiple loop-iterations using a private memory, while NDRange

kernels share data among multiple work-items by using local memory.

In[2], it is emphasized loop unrolling, optimizing floating-point operations, optimizing

fixed-point operations, optimizing vector operations as common optimization techniques

for both single work-item kernels and NDRange kernels.

The memory hierarchy of OpenCL is shown in Figure 1.9. The host memory is

accessible only to the host. The global memory is accessible to both the host and the
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Fig. 1.7 OpenCL Execution Model

Fig. 1.8 OpenCL Kernel Programming Model[2]

device. Constant memory is read-only and only accessible to the device. Each workgroup

has a local memory shared by each work item, and a work item has its own private

memory.

1.2 Problem Statement

The dynamic programming algorithm ABEA is a time-consuming step in nanopolish

software packages that come under nanopore DNA sequencing. It has been discovered

that it consumes «70% of the total CPU time in execution[1]. The GPU implementation

of ABEA has limited to NVIDIA GPUs due to CUDA API[1]. Therefore, we identified

that it is essential to analyze the ABEA algorithm’s run-time on different hardware

platforms and investigate strategies to reduce the run-time.
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Fig. 1.9 OpenCL Memory Model

Moreover, GPU-oriented HPC systems consume high power consumption compared to

FPGAs[22]. Therefore, we identified that it is necessary to deploy the ABEA algorithm

to run on a low-power-consuming hardware platform.

1.3 Proposed Solution

We propose to address the limitations of the latest GPU version of ABEA. Using FPGA-

based implementation, we hope to achieve better performance and power utilization.

Using OpenCL, we develop a portable version of the algorithm, which we can deploy in

FPGAs, GPUs, CPUs, and other processors and accelerators.



Chapter 2

Related Work

2.1 GPU Accelerated Adaptive Banded Event Alignment

Algorithm

Previous research[1], which is done under the objective of accelerating ABEA, deployed an

accelerated version of the algorithm on GPUs using CUDA. In this work, high read length

variability was one of the critical problems solved by various memory optimizations and

a heterogeneous computing approach that uses both CPU and GPU. They have achieved

3-5x performance improvement on the CPU-GPU system compared to the original CPU

version of the nanopolish software package.

As of now, the complete methylation calling of a human genome can be performed in

real-time while the nanopore sequencer is operating on an embedded system such as in

an SoC equipped with an ARM processor and an NVIDIA GPU.

They have re-engineered the original Nanopolish methylation detection tool to effi-

ciently utilize existing CPU resources, which they have referred to as f5c. According to

its results, f5c powered by GPU accelerated ABEA can process the output from the rest

of the pipeline on a single NVIDIA TX2 SoC, at a speed of (>600 Kbases per second) to

carry on with the sequencing output as shown in Figure 2.1.

Also, they have shown that if the original Nanopolish was executed on the NVIDIA

TX2 SoC, the processing speed is limited to « 256 Kbases per second. Their work will

not only reduce the associated costs of nanopore data processing and data transfer but

will also improve the turnaround time of the final test outcome.
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Fig. 2.1 Human Genome Processing on-the-fly[1]

2.2 Algorithms Accelerated on FPGAs

2.2.1 Smith-Waterman Algorithm Acceleration Using OpenCL

Smith-Waterman (SW)[23] algorithm is a widely used pairwise sequence alignment algo-

rithm that finds the best possible aligned sub-segment in a pair of sequences. Accelerating

SW is a great challenge in the field of high-performance computation.

In[24], Rucci et al. has presented SW implementation, which is capable of aligning

DNA sequences of unrestricted size for Altera Stratix V using OpenCL. In this work, the

kernel is implemented using the task parallel programming model. The alignment matrix

is divided into vertical blocks. In a row-by-row manner, each block is computed from top

to bottom and left to right. This approach supported by OpenCL has improved the data

locality and has reduced the memory requirement for block execution. They showed that

using smaller data types for kernel implementation has increased the performance and

reduced resource consumption.

In[25], by Rucci et al. SW kernel, has exploited inter-task parallelism. They have

utilized the SIMD (Single Instruction Multiple Data) vector capability available in the

FPGA. Therefore, instead of using one sequence at a time, multiple sequences are aligned

at a time. It is emphasized that the allocation of 64-byte host side buffers has improved

the data transfer efficiency because Direct Memory Access (DMA) takes place to and

from the FPGA.

In[26], Sirasao et al. has presented FPGA and OpenCL based acceleration to the

SW algorithm. They have benchmarked performance per watt on different hardware

platforms, including CPUs, GPUs, and FPGAs. Also, it presents a performance tradeoff

using OpenCL based programming environment.
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2.2.2 High-Performance Stencil Computation Using OpenCL

Stencil computations are one of the most important types of algorithms in High-

Performance Computing (HPC) that are widely used applications in the fields of weather,

wave, seismic, and fluid simulations, image processing, and convolutional neural networks.

In 2017, Waidyasooriya et al. proposed an FPGA platform using OpenCL for stencil

computations[27] using iteration-parallel computation where multiple iterations are

processed in parallel. With that, they proposed an optimization methodology to find the

optimal architecture for a given application[27]. They have achieved higher processing

speed relative to multicore CPU and GPU implementations and more than 60% of the

peak performance given by FPGA.

In[28], Wang et al. proposed a new heterogeneous architecture design for stencil com-

putations to improve performance with saved FPGA resources. Further, they developed

a performance model to determine optimal stencil accelerator design parameters and

proposed a framework to optimize and synthesize stencil computations onto FPGAs au-

tomatically. They achieved a 1.65X performance increment compared to state-of-the-art

with fewer hardware resources.

In[29], Jia et al. have Optimized 1D convolution, 2D convolution, and 2D Jacobi

iteration kernels for both Single-Task and NDRange modes. They were able to gain 7.1X

and 3.5X speedup factors for the Sobel and Time-domain FIR filters than Altera design

examples.

2.2.3 K-Nearest Neighbor Algorithm Using OpenCL

K-Nearest Neighbor Algorithm (KNN) is one of the most popular machines learning

algorithms[30] and due to high computational complexity for large datasets, it has become

popular in the field of high-performance computing.

In[31], Pu et al. have proposed a new solution to speed up the KNN algorithm on

FPGA-based heterogeneous computing systems with OpenCL. They have introduced a

specific bubble sorting algorithm based on FPGA’s parallel pipeline structure to optimize

the KNN algorithm. The GPU accelerated our KNN algorithm by 410 times the speed of

the 4-threads CPU implementation, while FPGA achieved 148 times. When comparing

the power consumption, CPU implementation could merely classify 0.015 query objects

per Joule and GPU achieved 4.024, while FPGA 12.056. The energy-efficient ratio (EER)

in FPGA is three times better than the GPU.

Two different implementations of the energy-efficient approach for the KNN algorithm

are presented[32] by Muslim et al. Furthermore, they have compared the performance
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between GPU and FPGA implementations of the same algorithm. In the first approach,

both sorting and nearest neighbor identification are performed by the host. It uses

only global memory and because the independent data usage algorithm is extremely

parallelizable.

In the second approach, they have implemented two kernels to calculate distances

and to find k-smallest distances, and return their indices at the end of execution. In this

approach, FPGA implementation is the fastest, and still, it consumes lesser power and

energy. It has performed seven times faster than the first approach.

2.2.4 Convolutional Neural Networks (CNN) Using OpenCL

It is challenging to apply CNNs for real-time applications with the requirement of low

power consumption. Recent studies on accelerating CNNs on FPGAs, especially with

high-level synthesis, have shown the advantage of reconfigurability and energy efficiency,

and fast turn-around-time over GPUs.

In[33], Suda et al. proposed a systematic design space exploration methodology to

maximize the throughput of an OpenCL based FPGA accelerator for a given on-chip

memory, registers, computational resources, and external memory bandwidth. They

implemented a CNN with fixed-point operations on FPGA using OpenCL and identified

critical design variables that affect the throughput and execution times. Then it was

modeled and validated as a function of those variables. They proposed and demonstrated

a systematic way to minimize the total execution time of large-scale CNNs: AlexNet[34]

and VGG on FPGAs.

In[35], Zhang et al. proposes an analytical performance model to perform in-depth,

quantitative analysis on resource requirements and performance of CNN classifier kernels

and available resources on modern FPGAs. Further, they propose a new kernel design to

address the key performance bottleneck of chip memory bandwidth identified by applying

the model to analyze VGG CNN to balance memory access between computation, on-chip,

and off-chip optimally. They have verified the effectiveness of the proposed model and

were able to achieve the highest performance, energy efficiency, and performance density

relative to state-of-art OpenCL FPGA CNN implementations.

In[36], Wang et al. introduced and demonstrated PipeCNN, an efficient FPGA

accelerator that is open for researchers to be implemented on a variety of FPGA platforms

with reconfigurable performance and cost. It includes a set of OpenCL kernels (namely

Convolutional kernel, Data mover kernel, and other kernels) integrated using Altera’s

OpenCL extension channels. Throughput optimization is done by data vectorization and

parallelization of CUs. Optimizations of bandwidth are achieved by introducing a sliding-
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window data buffering scheme. Fixed-point arithmetic is used instead of floating-point

to reduce memory bandwidth requirements and hardware costs.

2.2.5 Molecular Dynamics Applications Using OpenCL

Molecular dynamic (MD) is the area of computer simulations to analyze the physical

behavior of atoms and molecules in space. The simulation is driven by the numerical

results given by relatively applying classical Newtonian dynamic equations to atoms or

molecules.

In[37], they propose an OpenCL-based heterogeneous computing system with an

FPGA accelerator. They have implemented the most time-consuming, non-bonded

interaction computations using the FPGA accelerator. Since the atoms move with time,

the number of atoms in a cell is not constant, making the loop boundaries data-dependent.

So it is not suitable for OpenCL implementation. To get around this issue, they introduced

a pipelined architecture replacing nested loops.

In[38], they tried to experiment and determine whether the OpenCL implementation

is competitive with an HDL implementation of MD using several designs with pipelines:

• Single-level implementations in Verilog and OpenCL,

• A two-level Verilog implementation with the optimized arbiter,

• Several two-level OpenCL implementations with different arbitration and hand-

shaking mechanisms, including one with an embedded Verilog module.

2.3 OpenCL Kernel Optimization on FPGAs

It is mandatory to consider best practices when deploying OpenCL kernels on FPGAs.

Imperfect approaches can lead to an underutilization of the FPGA computing capabilities.

In[39], Shata et al. presented three-fold to optimize OpenCL kernels on FPGAs. They

can be summarized as follows.

• Avoiding Global Atomic Operations: Imperfect memory hierarchy design of the

implementation leads to memory stalls and insufficient memory bandwidth. As

mentioned in [39], to reduce global atomic operations, they have to do within the

same work-group. After finishing all the atomic operations locally, it has to fetch

the results back to the global memory. This will reduce the number of global

memory accesses by work-items.
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• Specifying work-group size: Intel FPGA runtime and offline compiler enforce some

constraints on the work-group size and the number of concurrently running work-

groups. When the OpenCL kernel contains a barrier at compilation time, the

maximum size of the work-group is set to 256. At runtime, the work-group size is

set to 1 when the kernel contains a barrier, queries the local work-item id, or uses

local memory. To get the best performance from such kernels, the work-group’s

size should be appropriately adjusted when enqueueing the kernel at the host side.

• Alignment of the Allocated Host Memory: It is recommended to align the host

buffers that will be read/written by the FPGA device to at least 64 bytes. This

allows direct memory access (DMA) transfer, and hence improving the data transfer

efficiency.

According to Best Practices Guide[40], provided by Intel FPGA SDK for OpenCL,

the following guidelines have to consider to optimize global memory access.

• The default OpenCL offline compiler configures global memory in a burst interleaved

configuration. It prevents load imbalance by ensuring that memory accesses do not

favor one external memory bank over another. However, OpenCL allows users to

manually partition memory banks, depending on the application to achieve better

performance.

• To minimize global memory accesses, it recommends first preload data from a group

of computations from global memory to constant, local, or private memory. Then

perform the kernel computations on the preloaded data and then write the results

back to global memory.

• If the FPGA board offers heterogeneous global memory types, the user can deploy

different memory accesses with varying efficiencies.

2.4 Takeaways from Related Work

Following are the key points in terms of optimizing FPGA-based accelerations using

OpenCL.

• Larger pipelines lead to better performance but at the cost of higher resource

consumption.

• The use of smaller data types for kernel code results in better performance and less

resource consumption on FPGAs.
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• Data level parallelism is important to achieve successful performance rates at the

expense of a moderate increase in resource usage.

• When considering DNA sequencing algorithms, larger workloads benefit all kernels

regardless of sequence similarity.

• When considering power efficiency, most of the FPGA accelerators are better than

GPU-based implementations.

• The exploitation of OpenCL memory hierarchy such as the private memory of-

fers considerable benefits, although constant memory usage hardly improves the

performance.

• Data transfer time between CPU and FPGA is a performance bottleneck. This

can be eliminated using unified memory space for CPU and FPGA.

• Since OpenCL allows multiple devices exploitation; the workload can be distributed

among multiple FPGAs to achieve better performance.

• Unlike the existing HDL-based alternatives, the OpenCL paradigm facilitates

portability.



Chapter 3

Design and Implementation

In the first phase of our project, we followed the procedure described in[1]. The ultimate

goal of this approach is to optimize the ABEA algorithm. Following, describes the

methodologies that we have used based on[1]. In the latter phase, we have fine-tuned the

implementation based on FPGA specific optimization techniques.

In this system, the application starts out executing on the CPU, and then the CPU

launches kernels on FPGA. The data transferred between host and the device is done

using the PCIe bus to minimize the impact of communication.

The Pseudo code of the CPU implementation of ABEA algorithm in shows in Figure

3.1. The align function consists of four main steps.

1. Initialization of first two bands (b0 and b1)

2. Outer loop: iterates through rest of the bands from top-left to bottom-right of the

DP table

3. Inner loop: iterates through each cell in current band(bi)

4. Backtracking: find the actual alignment (event-ref pairs)

3.1 NDRange Kernel Implementation

When a massive problem is broken down into finite number of sub-problems, each

individual component becomes simple in implementation and quick in execution. The

individual threads are called work items and the complete amount of work to do is called

the NDRange.
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Input:
ref[]: the base-called read (1D char array)
events[]: event table containing {µx, σx, nx} of each event—1D
{float,float,float} array
model: pore-model
Output:
alignment[]: alignment denoted by a list of {event index,k-mer index}—1D
{float,float,float} array

1: function align(ref, model, eventsq)
2: initialise first two bandspscore, trace, ll idxq

3: for i Ð 2 to n bands do
4: idir Ð suzuki kasahara rulepscoreri ´ 1sq

5: if dir ““ right then
6: ll idxris Ð move band to rightpll idxri ´ 1sq

7: else
8: ll idxris Ð move band downpll idxri ´ 1sq

9: end if
10: min j, max j Ð get limits in bandpll idxrisq
11: for j Ð min j to max j do
12: s, d Ð computepscoreri ´ 1s, scoreri ´ 2s, ref, events, modelq
13: scoreri, js Ð s
14: traceri, js Ð d
15: end for
16: end for
17: alignment Ð backtrackpscore, trace.llq
18: end function

Fig. 3.1 Adaptive Banded Event Alignment(ABEA)

NDRange kernel programming model does not support thread-level parallelism like

in GPUs. The compiler will generate at least one compute unit for each kernel written

during the kernel compilation process. The hardware generated by the compiler is in a

deep pipeline, and in each clock cycle, it attempts to start a new execution of the kernel.

A typical kernel will be several hundred clock cycles deep, and there can be hundreds

of work items in-flight simultaneously at different stages of the pipeline. The compiler

also performs work-group pipelining, and it allows multiple work-groups to be in a flight

in the same compute unit. As work-items perform different operations simultaneously

for different data, the behavior of NDRange kernel is similar to multiple-instructions

multiple-data (MIMD) computation.
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For our NDRange kernel implementation, we followed the GPU approach taken in [1]

and convert it to evaluate the performance of OpenCL implementation on FPGA.

We broke the main kernel into three sub kernels, namely Pre, Core, and Post. We

tried to achieve the maximum benefit of hardware resources and optimal work-group

configuration by splitting the kernel. The following section describes pre, core, and post

kernel implementations.

3.1.1 Pre Kernel

The pre kernel task is to initialize the first two bands of the dynamic programming table

and pre-compute the values in the kcache data structure. kcache is a novel data structure

introduced by Gamaarachchi et al. in[1].

In this implementation, we used a 2D work-item plan and assign a work-group to

each read. The work-group configuration is shown in Figure 3.3.

The pseudocode of pre kernel shows in Figure 3.2. Lines 2-3 initializes the work-item

index to execute. Lines 5-8 initializes the first two bands of the dynamic programming

table. Lines 10-11 initializes the index of the lower-left band and lines 13-16 initializes

kcache.

1: function align pre(..., modelq)
2: j Ð thread index along x
3: i Ð thread index along y
4: pref, score, trace, ll idx, kcacheq Ð get OpenCL pointerspi, ...q
5: if j ă W then
6: scorer0, js, tracer0, js Ð ´8, 0
7: scorer1, js, tracer1, js Ð ´8, 0
8: end if
9: if j ““ 0 then
10: ll idxr0s Ð tei0, ki0u

11: ll idxr1s Ð tei1, ki1u

12: scorer0, si0s Ð 0
13: for k = 0 to numkmers do
14: kmer Ð get kmer atpref, kq

15: kcacherks “Ð get entry from poremodelpkmer, modelq
16: end for
17: end if
18: end function

Fig. 3.2 Pre Kernel Pseudo Code
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Fig. 3.3 Work-group configuration for Pre and Core kernels

3.1.2 Core Kernel

As we ported the CUDA implementation to OpenCL in NDrange implementation, we

identified that the core kernel has the highest computational weights compared to the

other two kernels. The core kernel is responsible for the dynamic programming table

filling. The pseudo code of the core kernel shows in Figure 3.4.

After configuring work-groups as shown in Figure 3.3, ideally, reads should be pipelined

because they are assigned to separate work-groups. Since there are data dependencies

among bands, the compiler failed to pipeline reads. It has heavily impacted the overall

performance since they are ultra-long reads(> 1 Mbases).

3.1.3 Post Kernel

The post kernel performs the final backtracking using intermediate results calculated from

pre and core kernels. The GPU implementation has not achieved fine-grained parallelism

for the post kernel since they have used one thread block for the read.
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function align core(...)
j Ð thread index along x , i Ð thread index along y
pevents, score, trace, ll idx, kcacheq Ð get OpenCL pointerspi, ...q
n bands Ð n events ` read len

shared c scorerW s, p scorerW s, pp scorerW s

shared c ll idx, p ll idx, pp ll idx
if j ă W then

p scorerjs, pp scorerjs Ð scorer1, js, scorer0, js

p ll idx, pp ll idx Ð llr1s, llr0s

barrier()
for i Ð 2 to n bands do

if j==0 then
dir Ð suzuki kasahara rulepp scoreq

if dir == right then
c ll idx Ð move band to rightpp ll idxq

llris Ð c ll idx
else

c ll idx Ð move band downpp ll idxq

llris Ð c ll idx
end if

end if
barrier()

min j, max j Ð get limits in bandpc ll idxq

barrier()
if j ě min j AND j < max j then

s, d Ð computepp score, pp score, kcache, events, modelq
c scorerjs Ð s
traceri, js Ð d

end if
barrier()

scoreri, js Ð c scorerjs

pp scorerjs, p scorerjs, c scorerjs Ð p scorerjs, c scorerjs, ´8

if j==0 then
pp ll idx, p ll idx Ð p ll idx, c ll idx

end if
barrier()

end for
end if

end function

Fig. 3.4 Core-kernel Pseudo Code

In our implementation, the post kernel works as a single work item kernel. To get the

best performance on a single work-item kernel, loop iterations have to pipeline. Since
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there are several global memory accesses, pipeline stalls lead to poor performance on

FPGA as well. Post kernel time can be neglected because it is very little compared to

the core kernel.

3.2 Optimization Techniques for NDRange Kernel

3.2.1 Decomposition of the Algorithm into Multiple Kernels

All-in-one kernels tend to use a large number of registers. But, typical OpenCL devices

only have a finite number of register file sizes. Therefore, with fewer concurrent warps,

large kernels often result in poor overall performance compared to multiple kernels.

Splitting kernel preferred for efficient work-group assignment too. Also, it will impact

some of the optimization techniques, such as loop unrolling, since they consume a large

hardware resources[40]. As a solution to this problem, we divided the algorithm into

three kernels(Pre, Core, Post).

There are several work-item synchronizations associated with the core kernel. These

barriers will break the pipeline, and it is a drawback in terms of work-group pipelining.

To overcome this issue, we split the core kernel further into six more kernels at barrier

points and investigated the run-time. We observed a massive number of kernel switches

within the core kernel during the execution. It added an extra delay to the overall

run-time.

3.2.2 Specifying Work-Group Size

Specifying work-group size will support the Intel FPGA SDK for OpenCL offline compiler

to generate the best fitting kernel design on the board with hardware optimizations. In

our NDRange kernel implementation, a two-dimensional work-item plan uses to execute

work-groups parallel. Work-group width is 100 work-items which is sufficient for the

ABEA algorithm, and work-group is assigned per read.

3.3 Single Work-item Kernel Implementation

The implementation of single work item kernels is very similar to a typical C program

written for CPU. Single work item kernels contain loops. Each loop-iteration is used as

the unit of execution of a kernel. Therefore, multiple loop-iterations are computed in

different pipeline stage in parallel.
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1: function align swi kernel(ref, model, events))
2: for read Ð 1 to n reads do
3: for i Ð 0 to n kmers do
4: for j Ð 0 to kmer size do
5: rank Ð get rank and accumulate(sequence[i+j])
6: end for
7: kmer ranks[i] Ð rank
8: end for
9: for i 0 to n bands do
10: for j 0 to bandwidth do
11: bands[i,j] Ð -infinity
12: trace[i,j] Ð 0
13: end for
14: end for
15: bands, trace Ð initialize first two bands
16: for i Ð 2 to n bands do
17: i dir Ð suzuki kasahara rule(score[i-1])
18: if dir == right then
19: ll idx[i] Ð move band to right(ll idx[i - 1])
20: else
21: ll idx[i] Ð move band down(ll idx[i - 1])
22: end if
23: min j,max j Ð get limits in band(ll idx[i])
24: for j Ð min j to max j do
25: s, dir Ð compute score, direction of which the max score came
26: score[i,j] Ð s
27: trace[i,j] Ð dir
28: end for
29: end for
30: end for
31: end function

Fig. 3.5 Single Work Item Implementation of ABEA

Single Work Item Kernels are best suited for implementing deeply pipelined algorithms.

The ABEA algorithm can be divided into three main steps. Initialization of first two

bands, Filling the cells with score value for the rest of the bands, and finally traceback

step which finds the best event-space alignment. Out of these three, the second step is

highly compute-intensive.

The first step (line 2 - 15) initializes bands and trace arrays, initializes the first two

bands and fills an array called ‘kmer ranks’. This array is required in later computations.
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Rank for each kmer in the sequence is determined by assigning a weight for each base

and shifting according to the place of the base within a kmer.

The number of hardware clock cycles a pipeline must wait before it can launch the

successive loop iterations is called as the Initiation interval (II). This for-loop can be

pipelined with an II of 1 since there are no data or memory dependency between two

iterations.

The second step (line 16 - 29) calculates the rest of the bands (b2, b3,..) while moving

the adaptive band according to the Suzuki Kasahara rule. Calculation of the current band

depends on the previous two bands results as explained in Section 1.1.3. Therefore, the

loop (line 16) can not be pipelined due to data dependency between two loop iterations

figure showing data dep. of bands. The inner loop (line 24) always goes through a band

and fills the cells within a band. This loop can be pipelined with a minimum II of 1 due

to the absence of data or memory dependency between loop iterations.

The final traceback step consists of a loop with high data dependency between two

loop iterations. This behavior results in pipelines with an II of almost the latency of the

pipeline stage. Therefore, it is equivalent to serial execution, which is more suitable for

running on a CPU than a single work item kernel on FPGA.

According to the above observations, we merged the first and second steps to build a

deeply pipelined Single work item kernel. Then CPU performs the traceback step. Figure

3.6 shows a pipeline diagram including only the main for-loops in the kernel (For-loop at

line 2, line 16, and line 24 in Figure 3.5). Computations related to a new read starts its

execution in every clock cycle, set of bands in a read executes in a serial manner due to

unavoidable data dependencies, and a new cell inside a band starts its execution in every

clock cycle.

3.4 Optimization Techniques for Single Work Item Kernel

3.4.1 Loop Unrolling

Loop unrolling is replicating the body of the loop multiple times. It reduces (eliminates)

the loop control overhead and loop test instructions to reduce (eliminate) the trip count

of a loop. In general, loop unrolling leverages to process more data in a single clock

cycle. Additionally, when there are no loop-carried dependencies the loop iterations can

be executed in parallel improving the performance. But, loop unrolling increases the

FPGA resource usage. OpenCL provides the capability of partially unrolling where we

can specify the unrolling factor.
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Fig. 3.6 Pipeline diagram of Single-work-item Implementation

Loops at line 4 and line 10 in Figure 3.5 can be fully unrolled simply putting OpenCL

pragma “pragma unroll” before the loop. First loop in Listing 3.1 shows the code for fully

unrolled loops at line 4. Note that the trip counts of the loop is constant (KMER SIZE).

We can confirm whether they have unrolled from the loop analysis Table 4.7.

When the trip count of a loop changes per out-loop iterations, the OpenCL offline

compiler cannot generate a circuit fully unrolling the loop. We can partially unroll a loop

using OpenCL pragma “pragma unroll <N>” where N is the unroll factor. The OpenCL

offline compiler tries to unroll the loop at most N times. If we set N to 1, it keeps the
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compiler away from automatically unrolling the loop. Second loop in Listing 3.1 shows

the code for 4X partially unrolled loops at line 24. Note that the trip counts of the loop

is not a constant (max offset - min offset).

#pragma un r o l l

f o r ( i n t i = 0 ; i < KMER SIZE; ++i ) {
//Loop body

}

#pragma un r o l l 4

f o r ( i n t o f f s e t = min o f f s e t ; o f f s e t < max of f s e t ; ++o f f s e t ) {
//Loop body

}
Listing 3.1 Fully and partially unrolled loops

3.4.2 Avoid Loop-carried Dependencies Due to Memory Accesses

We stated that Single-work-item kernels are deeply pipelined by the OpenCL offline

compiler at the compilation time. To decide the pipeline structure, the compiler checks

for loop-carried dependencies. When the kernel code becomes complex and massive due

to the algorithms and data structures used, the compiler may falsely detect loop-carried

dependencies. The OpenCL offline compiler generates separate hardware to handle

load and store instructions that are dependent. These dependent instructions must be

executed in order to preserve the correctness of the algorithm.

We can instruct the compiler to avoid falsely detecting loop-carried dependencies

using the OpenCL pragma “pragma ivdep”. The offline compiler does not generate the

additional hardware for the loop below the pragma declaration. This might result in a

reduction of logic utilization of the kernel. Further, it might reduce the II as well due to

the removal of data dependency between successive loop iterations.

In our Single-work-item implementation, the OpenCL offline compiler pipelined the

outer-most loop at line 2 in Figure 3.5 with a finite amount of II by default. The loop

is there to iterate over the reads one by one. Since we allocate separate memory space

for necessary data structures per read, we can guarantee that there are no loop-carried

dependencies for this loop. Listing 3.2 shows how we instruct the compiler to avoid

loop-carried dependency using the pragma.



Chapter(3) : Design and Implementation 30

3.4.3 Specifying a Loop Initiation Interval (II)

Initiation interval is the number of hardware clock cycles a pipeline must wait before it

can launch the successive loop iterations. An optimally pipelined loop has a II of 1. Then,

one loop iteration is launched every clock cycle. OpenCL enables the designer to specify

the II for a particular loop. Declaration of OpenCL pragma “pragma ii <N>” instructs

the offline compiler to achieve II of N at the compilation time. Setting a higher value for

N will instruct the compiler to be less aggressive in optimizing II. Being less aggressive

on loops which are short-running (ex: initializations) than the loops long-running (ex:

compute intensive part of the algorithm) will allow to achieve a higher fmax for the overall

kernel design.

Listing 3.2 shows how we instruct the compiler to optimize the outer most loop to

achieve II of 1 using the pragma.

#pragma i i 1

#pragma ivdep

f o r ( i n t r e ad i = 0 ; r e ad i < n reads ; r e ad i++) {
//Loop body

}
Listing 3.2 Fully and partially unrolled loops

3.5 Optimization Techniques For Both NDRange and Single-

work-item kernels

3.5.1 Processing as Batches of Reads

In the CPU implementation align function is called per each read. But, in OpenCL

implementation, a batch of reads is processed at a time to optimize the performance

by data transfer overhead between the host main memory and device memory and by

allowing the maximum usage of device resources for parallelization.

3.5.2 Allocate Align Memory on Host Side

The host must transfer the necessary input data to the kernels running on the FPGA.

Since we are processing batch of reads at a time we want to transfer huge chunks of data.

This transfer can be made efficient by allowing direct memory access (DMA). To achieve

this, we allocate aligned memory on the host side for the data structures necessary for
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the kernels. According to the Intel FPGA OpenCL bets practices guide, the memory

must be at least 64-byte aligned to allow DMA.

We can use posix mem align function from stdlib.h for the allocation of aligned

memory on the host side. For windows system, this can be done using aligned malloc

function from malloc.h header file. Listing 3.3 shows an example of allocation aligned

memory for an integer array of size N.

//On Linux

#def ine AOCL ALIGNMENT 64

#inc lude <s t d l i b . h>

void ∗ array ;

posix memalign ( ( void ∗∗)& read ptr hos t , AOCL ALIGNMENT, N ∗
s i z e o f ( i n t ) ) ; // A l l o ca t e

f r e e ( ptr ) ; //De−a l l o c a t e

//On Windows

#def ine AOCL ALIGNMENT 64

#inc lude <malloc . h>

void ∗ array ;

a l i gned ma l l o c (N ∗ s i z e o f ( i n t ) , AOCL ALIGNMENT) ; // A l l o ca t e

a l i g n e d f r e e ( ptr ) ; //De−a l l o c a t e

Listing 3.3 Allocating aligned memory on Linux and Windows

To set up aligned memory allocations, add the following source code to your host program:

3.5.3 Aligned Structs in Kernels

When structs are present in kernels, properly aligned structs results in generating the

most efficient hardware by the OpenCL offline compiler. If the designer does not specify

the alignment for a struct, the compiler decides it based on the size of the struct and

satisfying criteria of ISO C standard. To align a struct we can use OpenCL attribute

“aligned(N)” N is the alignment and it must be given in bytes.

If the fields in a struct does not match the struct size specified, the OpenCL compiler

adds padding to the fields. Sometimes this might affect the efficiency of the hardware.

To prevent this, we can use OpenCL attribute “packed” at the declaration of the struct
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along with the “aligned” attribute. A usage of both of them in our implementation is

show in Listing 3.4. The total size of 4 fields is 20 bytes (8 + 4 + 4 + 4) and minimum

field size is 4 bytes. Therefore, we packed and aligned the “event t” struct to 32 bytes.

typedef s t ruc t {
u in t64 t s t a r t ;

f l o a t l ength ;

f l o a t mean ;

f l o a t stdv ;

}
a t t r i b u t e ( ( packed ) )

a t t r i b u t e ( ( a l i gned ( 3 2 ) ) ) event t ;

Listing 3.4 Aligned structs in kernels

3.6 Using Intel FPGA Emulator for debugging

Usually, the OpenCL offline compiler takes few hours to compile and generate the

hardware even for a simple kernel code. In our case, the compilation time for a kernel

was around 3 hours to complete on the workstation we used. The Intel FPGA SDK

for OpenCL emulator can be used to assess the functionality of the kernels and the

correctness of the results without generating the hardware files(.aocx) for the FPGA. It

takes only few seconds to compile the kernel for the emulator which makes the debugging

process fast. First two commands in Listing 3.5 shows how to compile a kernel and run

it on the emulator. Later two commands are to show how to compile our NDRange

implementation and run it for a dataset (ecoli is the folder including the dataset given as

an argument for the host application).

# aoc −march=emulator <kerne l code >. c l −board=<board name> −o <

emulator binary >. aocx

# CL CONTEXT EMULATOR DEVICE INTELFPGA=<number of devices> <

ho s t app l i c a t i on f i l e name>

# aoc −march=emulator a l i g n . c l −board=de5net a7 −o a l i g n . aocx

# CL CONTEXT EMULATOR DEVICE INTELFPGA=1 ./ host e c o l i

Listing 3.5 Compile and run kernels on OpenCL FPGA Emulator
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However the OpenCL FPGA emulator has limitations compared to the real FPGA

hardware. The .aocx file generated for the emulator is not optimized and it does not

implement the actual parallel executions such as piplelines and executes sequencially.

Therefore, it is significantly slower than the real hardware. Because of that we used the

small ecoli dataset and a dataset with only one read filtered out from the ecoli dataset

for debugging using the emulator.

3.7 Compile and Run Kernels on FPGA

After the debugging phase of the kernel, it can be compiled and run on the real FPGA

hardware. We can use“aoc”command to compile a kernel code (.cl), generate optimization

reports (kernel name/reports/report.html) with other optimization flags.

3.8 Profiling the Kernels (Intel Dynamic Profiler)

Adding –profile option at the program compilation will generate performance counters

in the FPGA to acquire the memory access information at run-time. Once the kernel

executes, detailed memory access will record to profile.mon file. Using Intel “Dynamic

profiler” software, the file mentioned above can leverage to review memory access bottle-

necks. Listing 3.6 shows how to compile the kernel with profiling enabled, run the host

program, and open the Intel Dynamic Profiler. Figure 3.7 and 3.8 shows the source code

view and kernel view with various measurements using the Intel Dynamic Profiler.

# aoc −r epo r t −board=de5net a7 <kerne l code >. c l −o <

compi led binary >. aocx

# . / host

# aoc l r epo r t <compi led binary >. aocx p r o f i l e .mon <kerne l code >.

c l

Listing 3.6 Profile kernels using Inter Dynamic Profiler
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Fig. 3.7 Intel FPGA Dynamic Profiler for OpenCL - Source code

Fig. 3.8 Intel FPGA Dynamic Profiler for OpenCL - Kernel



Chapter 4

Results and Analysis

4.1 Experimental Setup

4.1.1 Isolation of ABEA Algorithm and Testbed Preparation

The isolated alignment algorithm is implemented in OpenCL and it was tested by com-

paring the output with dumped input and corresponding output of CPU implementation

of the algorithm.

The process flow of the test-bed is illustrated in Figure 4.1.

Fig. 4.1 Process Flow of the Testbed

After data dumping, it is used as the input to our implementation. The process flow

is illustrated in Figure 4.2.
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Fig. 4.2 Kernel Work Flow

4.1.2 Device Specifications

Table 4.1 shows specifications of hardware accelerators and the host PC used to obtain

results.

Platform FPGA GPU GPU
Host Intel(R) Xeon(R)

CPU E5-1630 v3
@3.70GHz

Intel(R) Xeon(R)
CPU E5-1630 v3 @
3.70GHz

Intel(R) Xeon(R)
Silver 4114 CPU @
2.20GHz

32 GB RAM 32 GB RAM 394 GB RAM
Accelerator Intel Stratix V Tesla K40 Tesla v100

4 GB RAM 12 GB RAM 16 GB RAM
Operating System CentOS 7 Ubuntu 20.04.1

LTS
CentOS 7

Compiler Intel FPGA
OpenCL SDK
18.0

CUDA SDK 11.1 CUDA SDK 11.1

Table 4.1 Device Specifications

4.2 Dataset

The experimental data set is a subset of publicly available reads aligned to a 2kb region

in the E. coli draft assembly (Table 4.2) and publicly available NA12878 (human genome)

Nanopore WGS Consortium sequencing data as a large dataset (Table 4.3).

The datasets used for the experiments, their statistics (number of reads, total bases,

mean read length and maximum read length) are listed in Table 4.4
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Sample E. coli str. K-12 substr. MG1655
Instrument MinION sequencing R9.4 chemistry
Basecaller Albacore v2.0.1
Region “tig00000001:200000-202000”
Note Ligation-mediated PCR amplification performed

Table 4.2 Details of the Small Dataset

Sample Human cell line (NA12878)
Instrument MinION sequencing R9.4 chemistry
Basecaller Albacore v2.0.2
Region “chr20:5,000,000-10,000,000”

Table 4.3 Details of the Large Dataset

Dataset Number of reads Number of bases
(Mbases)

Mean read
length (Kbases)

Max read length
(Kbases)

ecoli 143 0.8 5.727 12.618
chr 22 19275 158.8 7.7 196

Table 4.4 Statistical Information of the Dataset

4.3 Results and Analysis

Here, we evaluate the current two versions of the algorithm - Single-work-item kernel and

NDRange kernel implementations with CPU and GPU implementations. The reads are

loaded to the device via the host one batch at a time. To obtain CPU execution time,

we used the same host computer stated in section 3.2.1. Execution time for each kernel

are measured using gettimeofday function from sys/time.h.

4.3.1 NDRange Kernel Observations

Our first implementation was NDRange kernel which was directly ported from the CUDA

version. To identify the maximum batch size (number of bases per batch), we did the

following experiment on DE5net FPGA. Using the chr 22 dataset, we tabulated the

execution times while changing the maximum bases per batch (B) from 0.5M to onward.

As the results in Table 4.5, Kernel execution time slightly reduces with the increase

of B, the reason is the better resource utilization of the FPGA. Therefore, in further

evaluations of the NDRange kernel implementation on DE5net FPGA, we use the

maximum bases per batch as 1.4Mbases. More than 1.4Mbases on DE5net FPGA results

in out-of-resources error.
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Dataset B Data(s) Pre(s) Core(s) Post(s) Total(s) CPU(s)
small 2M 0.029 0.011 2.875 0.091 2.977 1.851
large 0.5M 6.327 3.851 908.470 69.528 981.849 275.305
large 1M 6.588 2.938 891.956 47.146 942.040 226.317
large 1.2M 6.478 2.747 884.471 43.280 930.498 220.810
large 1.3M 5.949 2.662 886.176 41.021 929.859 220.810
large 1.4M 6.365 2.662 888.559 40.107 931.328 246.243

Table 4.5 Kernel Execution Times for Different Maximum bases per batch

Considering the kernel execution times in Table 4.5, we can clearly see a lack of

performance in the Core kernel. To understand the bottlenecks of the kernel code we

used the Intel FPGA Dynamic Profiler for OpenCL. According to the profiler results,

the Core kernel is suffering from stalls at load/store operation to the global memory

of the device. Since there are multiple work items are executing simultaneously, these

stalls significantly affect the execution time of the Core kernel. Further resulting poor

allocation of the kernel clock frequency as shown in Figure 4.3.

Fig. 4.3 Intel FPGA Dynamic Profiler for OpenCL - Core kernel

With the above observations such as poor kernel clock and stalls when accessing

global memory, we tried minor optimization techniques that can be done by defining flags

while compiling the kernels stated in Intel FPGA SDK for OpenCL Standard Edition:

Best Practices Guide[40]. But, the results were almost the same as above.

Before changing the composition of kernels or inside the kernels, we suspected whether

the existence of few very long reads in a batch causes the poor execution time.

Then we filtered the large dataset before feed into the 3 kernel implementation. 20

bins of reads were generated with the bin size of 10Kbases depending of the length of the

reads. The distribution of number of reads per each bin is shown in Figure 4.4.

We can filter out very long reads which is the minority in the dataset and process

them on the host while processing the rest of the reads which is the majority on the

FPGA.
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The evaluation results for those 20 bins are in Table 4.6.
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Fig. 4.4 Number of reads in each read length range

Range Reads Data(s) Pre(s) Core(s) Post(s) Kernels(s) CPU(s) Speedup
0k-10k 14150 2.326 0.729 299.041 13.507 313.277 97.362 0.31
10k-20k 4600 2.155 0.741 230.643 11.732 243.116 100.493 0.41
20k-30k 855 0.715 0.27 75.841 4.635 80.746 34.058 0.42
30k-40k 163 0.248 0.085 25.058 1.617 26.76 10.993 0.41
40k-50k 37 0.062 0.031 6.165 0.599 6.795 3.36 0.49
50k-60k 23 0.053 0.021 4.911 0.304 5.236 2.407 0.45
60k-70k 14 0.033 0.033 3.335 0.333 3.701 1.669 0.45
70k-80k 37 0.185 0.049 17.048 1.232 18.329 7.004 0.38
80k-90k 13 0.049 0.021 5.084 0.562 5.667 2.28 0.40
90k-100k 1 0.004 0.021 1.32 0.348 1.689 1.284 0.76

Table 4.6 Kernel Execution Times for Different ranges of read length

4.3.2 Discussion of NDRange Kernel Observations

As we stated in Section 3.1, the NDRange kernel programming model does not support

thread-level parallelism like in GPUs. Instead, OpenCL will generate a compute unit that

consists of a deep pipeline. Adding multiple compute units can increase the work-group

level parallelism by pipeline stages replication and pipeline widening. But, the limitation

of hardware resources on FPGA only allows us to add a maximum of two compute units.
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Fig. 4.5 Execution time of NDRange kernel on DE5net vs f5c on CPU

Typical GPU consists of many multiprocessors. Therefore, the NDRange version of f5c

does not provide the desired performance on FPGA.

Further, NDRange kernels, work-items are considered as the unit of execution and

executed in a pipeline manner. For single-work-item kernels, loop-iterations are considered

as the unit of execution and executed in a pipeline manner.

If there are no data dependencies in the kernels, both approaches give similar results.

But if there are data dependencies, Single-work-item kernels tend to perform better

compared to NDRange kernels. Because, the work-items of NDRange kernel have to stall

more often until the required data is available from the other work-items.

In ABEA algorithm, as we have stated before, score calculation of a cell in the band

depends on three other score values which should be calculated before.

To address these limitations and the nature of the algorithm, we decided to change

the kernel structure and build a Single-work-item kernel.

4.3.3 Single-work-item Kernel Observations

Detailed analysis of all the loops in Single-work-item kernel is shown in Table 4.7. Apart

from the three of the main for-loops mentioned above, other loops are fully unrolled when

the lower and upper bounds are constant for each iteration of its outer-loop. Rest of the

loops are made to execute in a pipeline manner with an II of 1. All the optimization

methods used in Single-work-item kernel implementation are discussed later under section

3.4 of this document.
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Loop at Pipelined II Bottleneck Details
line 2 Yes ą=1 n/a User-contrained II
line 3 Yes „ 1 n/a II is an approximation
line 4 n/a n/a n/a Fully unrolled
line 9 Yes „ 1 n/a II is an approximation
line 10 n/a n/a n/a Funny unrolled
line 16 No n/a n/a Out-of-order inner loop
line 24 Yes „ 1 n/a 4X partially unrolled, II is an ap-

proximation

Table 4.7 Loop Analysis of Single-work-item Implementation (DE5net)

Table 4.8 shows the estimated resources used by Single-work-item kernel in the design,

all channels, global interconnect, constant cache, and board interface compiled for DE5net

FPGA.

ALUTs FFs RAMs DSP Blocks
SWI kernel 230608 259136 1188 133
Global Interconnect 9860 22796 61 0
Board Interface 39076 51471 283 0
Total 279544 (60%) 333403 (36%) 1532 (60%) 133 (52%)
Available 469440 938880 2560 256

Table 4.8 Estimated Resource Usage of Single-work-item Implementation (DE5net)

System viewer snapshot from the compilation report is given in Figure 4.6. It shows

the interconnection of load-store units and different memory elements (Global, Local and

Private memory) using control flow, memory lines. The final trace-back step executes

within the host for better performance.

Comparison Between Different Implementations

Here we select a set of implementations on different platforms and compare the perfor-

mance in terms of data transfer time, execution time and power consumption. Selected

set of implementations are as follows.

Using each implementation, we perform event alignment on the same dataset (chr 22).

Then we measure and compare the energy consumption of different hardware. Power

consumption of different hardware platforms is calculated as explained below.

Our DE5-net board does not have an on-board power sensor. Therefore, we run

Quartus early power estimator tool[41] on the placed-and-routed OpenCL kernel to

estimate the power usage of the board. We assume that each memory module uses a
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Fig. 4.6 System viewer of Single-work-item Implementation (DE5net)

cpu f5c-cpu
cuda-k40 f5c-gpu forcing all of the reads to be computed on GPU (Tesla K40)
ocl-k40 OpenCL NDRange implementation on GPU (Tesla K40)
nd-init Direct conversion from CUDA to OpenCL NDRange.
nd-opt-1 nd-init with core kernel decomposition
swi-init Initial implementation as a OpenCL single-work-item kernel on FPGA.
swi-opt-1 Band initialization and filling rest of the bands on FPGA, post processing

on CPU.
swi-opt-2 swi-opt-1 with reduced II with loop unrolling, minimizing loop carried

dependencies, aligning kernel structs.

maximum of 1.17 Watts based on the datasheet of a similar memory model[42]. Hence,

add 2.34 Watts to the resulting estimation value to account for the power consumption

of the two memory modules.

We used nvidia-smi tool[43] to measure power draw of the Nvidia GPU cards with a

sampling interval of 1ms. To measure the power consumption of CPU and RAM modules

of the host computer, we use Intel Power Governor software utility library[44].
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When an implementation use both host and FPGA for event alignment calculations,

we calculate the total energy consumed by both host and FPGA. We assume 72W as the

power consumption of host which is the same we get while executing cpu implementation.

Since, 72W corresponds to the power usage for all pre, core, and post computations, it is

reasonable to take it as the max boundary.

Table 4.9 shows the results we obtained for different implementation. Following is an

explanation of each column of the table.

data(s) - For implementations with both host and device, the summation of host-to-device

and device-to-host data transfer time in seconds.

pre(s), core(s), post(s) - For implementations with separate kernels, execution time in

seconds.

align(s) - Execution time without data transfer time in seconds.

total(s) - Execution time with data transfer time in seconds.

P(W) - Power consumption of the hardware in Watts.

E(J) - Energy consumption of the hardware for during the align(s) in Joules. (Summation

of execution time*power for each hardware)

R - Rank given to the implementation for less energy consumption.

Figure 4.7 shows depicts the execution time of each implementation, Figure 4.8 depicts

the power consumption of each implementation, and Figure 4.9 depicts the total energy

consumption of each implementation for performing event alignment on chr 22 dataset.

Impl. data(s) pre(s) core(s) post(s) ailgn(s) total(s) P(W) E(J) R
cpu - 221.238 221.238 221.238 72.38 16013 5
cuda-k40 2.653 22.358 50.779 33.443 106.580 115.719 148.45 15822 4
ocl-k40 3.621 10.057 68.564 36.737 115.358 118.979 147.18 16978 6
nd-init 6.308 2.662 888.559 40.107 931.328 937.636 22.34 20806 7
nd-opt-1 7.581 2.932 1206.191 43.018 1252.141 1259.722 22.34 27973 8
swi-init 87.637 632.188 632.188 632.188 20.34 12859 2
swi-opt-1 82.299 126.049 240.015 20.717 386.781 469.080 18.12 14972 3
swi-opt-2 85.137 368.473 12.466 380.939 466.076 16.87 7118 1

Table 4.9 Comparison between different implementations
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Fig. 4.8 Power consumption of different implementations

4.3.4 Discussion of Single-work-item Kernel Observations

The observations in Table 4.9 can be analyzed and justified as follows.
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Fig. 4.9 Energy consumption of different implementations

Eventhough NDRange kernels on FPGA have a lesser power consumption than GPU

implementations, they reported a higher execution time. Therefore, they are ranked at 7

and 8 in terms of the energy consumption.

Usually, f5c-gpu allocate a set of very long reads selected according to a heuristic to

be computed on the CPU and the rest of the reads on the GPU. It results in around 50

seconds of execution time on Tesla K40. But, here we force the f5c-gpu implementation

to compute all the reads only on the GPU (cuda-k40 ). We observe that cuda-k40 and

ocl-k40 perform almost at the same level.

Unlike in FPGAs, in NVIDIA GPUs, Our NDrange OpenCL implementation executes

in a similar programming model to CUDA, and it works as a SIMD (Single Instruction

Multiple Data). When considering CUDA and OpenCL, there are minor differences.

The reason for slight execution time degradation in the ocl-k40 could be the kernel

compilation during the execution time.

Due to the lesser execution time of cuda-k40, it outperforms the energy advantage of

cpu and gets ranks 4 and ocl-k40 gets rank 6.

As mentioned, since the CPU’s power requirement is lesser than that of the GPU,

based on the energy consumption, the cpu implementation gets rank 5.

Among Single-work-item implementations, kernels with suitable FPGA specific opti-

mization techniques shows an improved the performance in execution time and power
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consumption which lead to less energy consumption. Hence, swi-opt-2 implementation is

in rank 1 and others get rank 2 and 3.

Among NDRange implementations on FPGA, decomposition of kernels into too many

kernels results in poor execution time eventhough the power consumption (estimated for

DE5net) is the same.

Among FPGA implementations, all Single-work-item kernels (swi-* ) perform signifi-

cantly better than NDRange kernels on FPGA (nd-* ) in terms of both execution time

and power consumption. The best Single-work-item kernel is 2x faster and consumes

only 34% of the energy compared to the best NDRange kernel.

As shown in Figure 4.7 In terms of execution time, GPU implementations (both

cuda-k40 and ocl-k40 ) perform better and 4x faster than swi-opt-2 on DE5net.

However, as shown in Figure 4.9, in terms of the energy required to perform ABEA

on the same dataset, Single-work-item implementations on FPGA are in lead. swi-opt-2

on DE5net needs only 43% of the energy consumption of the GPU implementation on

Tesla K40.
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Conclusion and Future Work

The Adaptive Banded Event Alignment algorithm is an improved version of DNA sequence

alignment, which is extensively used in nanopore DNA sequencing. In the previous work,

this algorithm has been parallelized and run efficiently on GPUs.

In our work, we introduce several implementations of the ABEA algorithm using

OpenCL to run on FPGA. We evaluate the performance of the implementations in terms

of runtime and energy consumption.

Among FPGA related implementations, Single-work-item kernel with suitable FPGA

specific optimization techniques performs better than other FPGA implementations

including NDRange kernel.

In terms of runtime, GPU implementations (both CUDA and OpenCL NDRange

kernel) on Tesla K40 perform better and 4x faster than FPGA implementations on

DE5net.

However, in terms of the energy consumption to perform ABEA on the same dataset

FPGA implementations are in lead. FPGA implementation on DE5net needs only 43%

of the energy consumption of the GPU implementation on Tesla K40.

Through out the work in this project, we identified the potential and ease of using

HLS over traditional methods for hardware programming. We used DE5net FPGA with

OpenCL 18.0 for experimenting and evaluation of results. It is a mid-range hardware

compared to the state-of-the-art.

The maximum predicted frequency we got for the kernels was around 250 Hz and it is

even lesser at the execution. The kernel operating frequencies of FPGAs are significantly

low compared to CPUs and GPUs. The absence of power sensors in the DE5net board we

had to estimate based on the circuit elements using Intel Quartus Early Power Estimator

which they state gives a medium accuracy of the estimate. The true power consumption

of kernels may differ due to many other reasons such as the environmental conditions.
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Therefore, we believe that with the advancement of FPGA hardware and HLS tools

with better optimizations methods can provide better results.
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