Self Paced Brain Computer Interface On Sensorimotor Rhythms For Virtual Objects Controlling Team Avishka Athapattu E/15/023 Prageeth Savinda E/15/059 Sewwandie Nanayakkara E/15/238 Supervisors Dr. Isuru Nawinne Prof. Roshan Ragel Mr.Theekshana Dissanayake Self-paced BCI with non motor imagery intent for virtual object controlling # Problems that have emerged #### Related work # Self-paced MI related BCI - Robert Lee and his team researched on Wheel chair controlin 2007 Success rate 90% - Graz University VR BCI system TPR 50% FPR 10% - Graz University VR System TPR 79% FPR 0.67% #### Self -Paced Non MI related BCI Faradji did a study on virtual object controlling TPR 59.98% # Signal Processing Krusienki Deanj in 2011 discuused critial issues in EEG signal processing related to BCI # Signal Classification - Zahg, Dalin studied a signal classfication method that uses 98.3% accuracy - Rodpongpun, Sura did a comparison between different classification methods # Data acquisition **EEG Signals** Cyton Board ### Methodology ** 4 Practicing Data acquisition without Visual and Feedback preprocessing Applying the model to the real time system Training a classification Feature extraction model 3 2 6 5 7 ____ Feed the classification output into an application Upgrade the System to Online adaptation #### Milestones for Current Semester #### BrainWaves | | Fast Fourier
Transformation | Low computational cost Magnitude of frequency components visualized | No temporal information Not good for non
stationary signals | |--------------------------|---------------------------------|---|--| | | Wavelet
Transformation | Both spatial and temporal information More suitable for non stationary signals | Computational cost is high Need chose proper mother wavelet | | Signal
Representation | Statistical Representations 15 | Low computational cost | Low information resolution | # **Artifacts** Eye artifact 0-5 Hz Muscle artifact above 40 Hz #### **Artifact Removal** #### **Independent Component Analysis** #### **FFT and Removal of Coefficients** #### Artifact Removal #### **Wavelet Threshold Method** #### **Wavelet Non-Threshold Method** #### Methods Comparison | Method | Information
Resolution | Computational
Cost | Real time | |----------------------------------|---------------------------|-----------------------|-----------| | ICA | High | Very High | No | | FFT with Coefficients
removal | Low | Low | Yes | | Wavelet with
Threshold | High but with noise | Medium | Yes | | Wavelet with
Non-Threshold | High | Medium | Yes | # Technology Stack Open BCI Python Unity #### Milestones for Next Semester # Q&A