Self Paced Brain Computer Interface On Sensorimotor Rhythms For Virtual Objects Controlling

Team Avishka Athapattu E/15/023

Prageeth Savinda E/15/059

Sewwandie Nanayakkara E/15/238 Supervisors Dr. Isuru Nawinne Prof. Roshan Ragel Mr.Theekshana Dissanayake

Self-paced BCI with non motor imagery intent for virtual object controlling

Problems that have emerged

Related work

Self-paced MI related BCI

- Robert Lee and his team researched on Wheel chair controlin 2007 Success rate 90%
- Graz University VR BCI system TPR 50% FPR 10%
- Graz University VR System TPR 79% FPR 0.67%

Self -Paced Non MI related BCI

 Faradji did a study on virtual object controlling TPR 59.98%

Signal Processing

 Krusienki Deanj in 2011 discuused critial issues in EEG signal processing related to BCI

Signal Classification

- Zahg, Dalin studied a signal classfication method that uses 98.3% accuracy
- Rodpongpun, Sura did a comparison between different classification methods

Data acquisition

EEG Signals

Cyton Board

Methodology **

4

Practicing Data acquisition without Visual and Feedback preprocessing

Applying the model to the real time system

Training a classification Feature extraction model

3

2

6

5

7

Feed the classification output into an application

Upgrade the System to Online adaptation

Milestones for Current Semester

BrainWaves

	Fast Fourier Transformation	 Low computational cost Magnitude of frequency components visualized 	 No temporal information Not good for non stationary signals
	Wavelet Transformation	 Both spatial and temporal information More suitable for non stationary signals 	 Computational cost is high Need chose proper mother wavelet
Signal Representation	Statistical Representations 15	Low computational cost	Low information resolution

Artifacts

Eye artifact 0-5 Hz

Muscle artifact above 40 Hz

Artifact Removal

Independent Component Analysis

FFT and Removal of Coefficients

Artifact Removal

Wavelet Threshold Method

Wavelet Non-Threshold Method

Methods Comparison

Method	Information Resolution	Computational Cost	Real time
ICA	High	Very High	No
FFT with Coefficients removal	Low	Low	Yes
Wavelet with Threshold	High but with noise	Medium	Yes
Wavelet with Non-Threshold	High	Medium	Yes

Technology Stack

Open BCI

Python

Unity

Milestones for Next Semester

Q&A