
WaiterBot System
Design Manual

Table of Contents

1. Introduction

2. Prerequisites

3. WaiterBot
3.1. Overview
3.2. Hardware Components Required
3.3. ESP-WROOM-32 Module
3.4. ESP32 Pinout Diagram
3.5. Block Diagram
3.6. Circuit Diagram
3.7. Obstacle Avoidance Mechanism
3.8. Food Item Detection
3.9. Battery Percentage Detection

3.10. Power
3.11. Line Following Mechanism
3.12. Stepper Motor Control
3.13. LCD Display
3.14. Communication Protocols
3.15. PCB Design
3.16. 3D models
3.17. Complete Code

4. Waiter Bot API
4.1. Introduction
4.2. Used Technologies
4.3. Authentication and Authorization
4.4. Real Time Communication
4.5. Main Solution Architecture
4.6. ER Diagram
4.7. Routing of a request through the application

1

5. Mobile Application

6. Web Application and Desktop Application
6.1. Design Architecture
6.2. Web Application of Owner
6.3. Desktop Application of Operator
6.4. Communication inside the Desktop application
6.5. Operator UI

7. Testing
7.1. Software Testing Plan and Results
7.2. Software Testing Screenshots
7.3. API Code Coverage Report
7.4. Mobile Application Testing
7.5. Hardware Testing Plan

8. Deployment
8.1. WaiterBot API
8.2. Owner Web Application

2

1. Introduction

Robots have seen a wide array and continuous applications in
various industries since their inception. The efficiency and versatility that
robots possess can be molded into a vast area of services, and robots in
restaurants can step up to be a huge breakthrough in terms of customer
and owner satisfaction and improving the overall experience in diners.

The WaiterBot System is an automated system designed for placing
and delivering orders in a restaurant. This system will replace the human
waiters with robot waiters for an efficient delivery process and also give
customers a new experience. Customers can place orders via the mobile
application and once the orders are ready, the WaiterBots will deliver the
orders to the customer.

Our solution is to replace the human waiter with a robot waiter and
also to replace the traditional menu cards system with a more attractive
and efficient order placing system. On an event where a customer visits
the restaurant he/she can place the order via the order placing system
and once the ordered items are ready, the items will be delivered to the
customer. Our solution will help the customer to select the food items
more efficiently with help of the reviews from previous customers and
also if an item is unavailable that item will not be shown in the menu. The
WaiterBot system will help the restaurant by providing an efficient
delivery mechanism. WaiterBots will not mess up orders and they will
deliver the food items to the correct table. Also this may be a new
experience for the customers and the WaiterBot system will attract more
customers to the restaurant.

3

2. Prerequisites

● Basic understanding of microcontroller programming with
arduino framework

● Web development with React framework
● Mobile development with Flutter
● Backend development with NodeJS

4

3. WaiterBot

3.1. Overview

When a customer selects the preferred items, the person at the control
unit will have to confirm the order. After the payment process is complete the
person at the control unit will be notified and a Waiterbot will be automatically
assigned to that table. The order can then be sent to the kitchen for
preparation. Once the order is ready, the food items have to be kept on the
assigned WaiterBot and the WaiterBot can be sent for delivery. These robots
are stationed near the control unit.

Once the WaiterBot is deployed, the WaiterBot will follow the correct
path to the table. If there is an obstacle in the path the WaiterBot will stop the
movement and notify the control unit. If the path is clear, the WaiterBot will
follow its path to the correct table. When the WaiterBot reaches the correct
table it will stay there until the customer collects all the food items from its
tray. When all the food items are collected, the WaiterBot will notify the control
unit and it will return to its station.

5

3.2. Hardware Components Required

Electronic Components
● ESP-WROOM-32 module - 1
● HC-SR04 module - 2
● IR sensor module - 7
● 5kg Load cell - 1
● HX711 module - 1
● 17HS4401 Stepper motor - 4
● DVR8825 stepper motor controller - 4
● 8 channel logic level converters - 2
● LCD display 16x02 - 1
● LCD I2C module - 1
● 18650 Lithium-ion battery - 6
● LM2596 buck converter module - 1
● 3s 20A Battery protection module - 1
● 12.6V DC charger - 1
● Resistors

○ 33k - 1
○ 10k - 1

Other Components
● 6.5mm wheels - 4
● Hexagonal coupling - 4

6

3.3. ESP-WROOM-32 module

ESP32 is used as the micro controller of the waiterbot. It has the following
specifications.

ESP-WROOM-32 Chip
● Xtensa® Dual-Core 32-bit LX6
● Upto 240MHz Clock Freq.
● 520kB internal SRAM
● 802.11b/g/n Wi-Fi transceiver
● Bluetooth 4.2/BLE

Power Requirement
● Operating Voltage: 2.2V to 3.6V
● On-board 3.3V 600mA regulator

Multiplexed I/Os
● 25 GPIOs
● SPI, I2C & I2S interface
● 15 ADC channels

Warning!
● GPIOs are not 5V tolerant. Use a level shifter in order to interface with the

5V components.
● When powering the ESP32 module with 5V, make sure to power it using

the VIN, to power the ESP32 Chip via the on board 3.3V regulator.

7

3.4. ESP32 Pinout Diagram

3.5. Block Diagram

8

3.6. Circuit Diagram

9

3.7. Obstacle Avoidance Mechanism

HC-SR04 modules are used for detecting the
obstacles in the path. The HC-SR04 module uses an
ultrasonic sensor and receiver to measure the
distance to an object. This is done by generating an
ultrasonic sound wave that bounces off an object and
returns to the sender. The sensor counts the time
between the signal sent and received to determine
how far the object is.

● Specifications
○ Operating voltage - 5V
○ Range - 3cm to 4m
○ Detection angle - 15 degrees

● Interfacing with ESP32 module

As shown in the circuit diagram, HC-SR04 module’s TRIG and ECHO should be
connected with the ESP32 through the logic level converter module, because
for proper operation of the HC-SR04 module, it should be powered with 5V and
ESP32 module’s GPIOs cannot tolerate 5V, so logic level conversion was
required.VCC and GND should be connected to 5V and GND respectively.

10

● Operation with the ESP32 module

The way this sensor is used is by setting a start pulse on the TRIG pin. The
sensor will start the measurement and return the result to the ECHO pin.

The start signal on the TRIG pin needs to be,
● at least 2µs LOW (0V) before it can be high again
● 10µs HIGH (+5V) to be considered a start pulse

Once a valid start pulse is detected on the trigger pin, the sensor will send 8
pulses of 40kH, and count how long it takes for the signal to return. Finally, it
will send 1 pulse on the ECHO pin of which the HIGH time (+5V) represents the
time (in microseconds) it took for the signal to be sent, bounced back on an
object and be received by the sensor.

● Calculating The Distance and Detecting the Obstacle

Microcontroller can measure the time that the signal from the ECHO pin was
high and compute the distance between sensors and obstacles using the
following equation.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑆𝑜𝑢𝑛𝑑 * 𝐸𝐶𝐻𝑂 𝑠𝑖𝑔𝑛𝑎𝑙 ℎ𝑖𝑔ℎ 𝑡𝑖𝑚𝑒)/(1000000 * 100 * 2)
Here,

Speed of sound = 343 m/s
Distance in meters
ECHO signal in high time in microseconds

If the calculated distance is less than the defined value then the robot will stop
its movement.

● Optimizing the performance in the code

Efficient polling can be used. The distance measurement can only be done in
periodic intervals rather than measuring in each and every iteration in the loop.

When measuring the high time of the ECHO pulse interrupt mechanism can be
used. Timer can be started when a low to high change on ECHO is detected and
the timer can be stopped when the high to low change on ECHO is detected.
This mechanism will not block the main loop when measuring the time in which
the ECHO pulse was high.

11

3.8. Food Item Detection

For food item detection the load cell and the
HX711 module is used. Readings from the load cell
are of millivolts and the HX711 module will amplify
and convert the analog readings to digital and send
them to the microcontroller.

● Mounting the load cell

Load cells should be mounted on two rigid plates and there should be spaces
between the load cell and the rigid plates as shown in the figure below and the
arrow marker on the load cell should point downwards.

12

● Interfacing with ESP32 module

As shown in circuit diagram, the load cell and HX711 should be connected as,

Load Cell HX711

Red wire E+

Black wire E-

White Wire A+

Green Wire A-

The VCC and GND of the HX711 module should be connected to 5V and GND
respectively. DT and SCK should be connected to D2 and D18 pins of the ESP32
module respectively.

● Measuring the weight

Measuring the weight can be done by using the ‘hx711.h’ library.

Before measuring the weight using the load cell and HX711 module, the
calibration factor has to be determined by placing known weights.
To determine the calibration factor the calibration code can be uploaded and by
placing the known weight the calibration factor can be adjusted until the
measured weight is the same as weight of the object.

Calibration code
https://github.com/buddhiheshan/waiterbot-hardware/tree/4d137bc18638d81
f204400325f3558340c5615a9/src

Once the calibration factor is determined, the weight can be measured.

13

https://github.com/bogde/HX711?utm_source=platformio&utm_medium=piohome
https://github.com/buddhiheshan/waiterbot-hardware/tree/4d137bc18638d81f204400325f3558340c5615a9/src
https://github.com/buddhiheshan/waiterbot-hardware/tree/4d137bc18638d81f204400325f3558340c5615a9/src

● Detecting the food items on the tray

When the WaiterBot is deployed for delivery, first the weight of the food item
is measured. If the weight is zero or close to zero then WaiterBot will inform the
control unit that there is no food item on the tray. After placing the food item
on the tray, the robot will deliver it to the correct table. If the food item is taken
away from the tray before reaching the correct table, the robot will stop and
will inform the control unit. After reaching the correct table the WaiterBot will
stay there until the food items are taken away from the tray. This is also done
by measuring the weight.

3.9. Battery Percentage Detection

Battery percentage can be determined
by reading the voltage value between
the two resistors. It is connected to the
D33 pin of the ESP32 and the analog
value is converted to a digital value by
using the ADC in the ESP32. This will
result in a value between 0 and 4095.
Then the value is mapped such that it is
between 0 and 100.

14

3.10. Power

WaiterBot is powered by 6 18650 lithium-ion batteries.
The 17HS4401 stepper motors require 12V and other
components(microcontroller, sensors and LCD) require
5V. To achieve this requirement a LM2596 step down
converter is used to step down from 12V to 5V.

3s 20A battery protection module is used to
prevent the over discharging and overcharging
of the batteries. Batteries are connected to the
3s 20A module as shown below,

15

3.11. Line Following Mechanism

An array of 7 IR sensors are used to detect the line.
Depending on the IR sensor input an error will be
computed and the speeds of the stepper motors will
be controlled according to the error.

● IR Sensor Specifications
Operating voltage - 5V

● Operation of the IR Sensors

IR sensors have an IR emitter and an IR receiver. Once the IR emitter emits the
IR beam, it will incident on the surface and reflect back. Depending on the

intensity of the reflected beam the receiver will create a digital signal. Using
the potentiometer on the IR sensor the threshold value can be adjusted.

As shown in the figure the black surface will absorb the IR beam and the white
surface will reflect the IR beam. Using this we can detect the black line.

16

● Interfacing with the ESP32

As shown in the circuit diagram, IR sensors can be interfaced with the
microcontroller. The VCC of the IR sensor should be connected to 5V and GND
should be connected to the GND. The OUT pin should be connected to the
microcontroller through a logic level converter since the IR sensors work with
5V and ESP32 works with 3.3V.

● IR sensor layout and the Error Detection

IR sensors are positioned as shown in the figure, 6 sensors are in line and one
the remaining is in front. One sensor is placed at front to detect the end points
and to compute errors when turning at bends.

Depending on the IR sensor readings, the error is calculated as shown in the
following figure. When the line is detected at the middle, the error is
considered as 0 and when the line moves towards the ends, the errors gradually
increase and decrease. When all the sensors detect a black line that means it is
a junction or an endpoint.

17

3.12. Stepper Motor Control

Stepper motors cannot be directly driven by the
microcontroller. Micro controller will provide necessary
logic for motor controlling and the DRV8825 stepper
motor controller will drive the stepper motor
depending on the logic from the microcontroller.

● 17HS4401 Stepper motor specifications
○ Operating voltage - 12V
○ Rated current - 1.7A
○ Step angle - 1.2 degrees
○ Steps per revolution - 200

● Operating the Stepper Motors with the Microcontroller and Motor
Controller

Stepper Motors are controlled by sending pulses.
Stepper motor will move one step for one pulse. And
the frequency of the pulses will determine the speed of
rotation of the stepper motor.

When the robot is out of the path (error will be -4, -3, -2,
-1, 1, 2, 3, 4) the speed of the motors will be computed
by using the error values. This can be used to correct the
path and this method is known as proportionality
control.

18

Warning!
Before connecting the stepper motors to the DRV8825 motor controller the
current limit of the motor controller should be adjusted to the rated current to
prevent damaging the stepper motor. The current limit can be adjusted by using
the potentiometer on the DRV8825 motor controller module. The current limit
can be commuted as follows,
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑚𝑖𝑡 = 𝑉𝑟𝑒𝑓 * 2
Where Vref is the voltage across the ref pin and the GND pin.

Following figure shows the measurement of Vref.

19

3.13. LCD Display

The 16x02 LCD display and the I2S port expander for the LCD are used to
display the information to the user. I2C port expander uses I2C protocol to
communicate between the microcontroller and the LCD I2C expander module.
This method was used to reduce the number of GPIO interfaces used by the
LCD.

● Library used - LiquidCrystal_I2C

Following diagram shows how the LCD with I2C expander can be interfaced
with the ESP32 micro controller.

The VCC and the GND pins of the I2C port should be connected with the 5V and
the GND respectively and the SCL and SDA should be connected with the D22
and D21 respectively.

20

https://github.com/johnrickman/LiquidCrystal_I2C?utm_source=platformio&utm_medium=piohome

3.14. Communication Protocols

WaiterBots will use Wifi to connect to the local network and will communicate
using MQTT over TCP. Asynchronous implementations of Wifi and MQTT are
used to connect the robots, so that if Wifi or MQTT disconnects the delivery
process will not get interrupted.

● Libraries used - async-mqtt-client, ‘WiFi.h’

● WaiterBots will subscribe the following topic,
waiterbot/{shop_id}/{robot_id}

● WaiterBot will publish to the following topic,
operator/{shop_id}/{robot_id}

● The following MQTT messages are sent to the operator,

MQTT message Meaning

ready WaiterBot is ready for delivery and is
at the station

empty No food item on the tray, but robot is
sent for delivery

delivering Robot has started delivering

obstacle Robot has stopped due to obstacle

stolen Food item has been taken away from
the tray before reaching the
delivering table

delivered Food item has been delivered

21

https://github.com/marvinroger/async-mqtt-client?utm_source=platformio&utm_medium=piohome

● The following MQTT messages are received by the waiterbot,

MQTT message Meaning

‘deliver {destination_junction_count}
{total_junction_count}
{turn_direction}’

Deliver to the specific table

3.15. PCB Design

22

3.16. 3D Models

3.17. Complete Code

https://github.com/buddhiheshan/waiterbot-hardware/tree/4d137bc18638
d81f204400325f3558340c5615a9/src

23

https://github.com/buddhiheshan/waiterbot-hardware/tree/4d137bc18638d81f204400325f3558340c5615a9/src
https://github.com/buddhiheshan/waiterbot-hardware/tree/4d137bc18638d81f204400325f3558340c5615a9/src

4. Waiter Bot API

4.1. Introduction

Since we have to provide the service to multiple types of devices, (desktop,
mobile, IoT) we decide to have an API to facilitate the core service.

4.2. Used Technologies
● Nodejs with express.js framework
● Mongodb

To store the data on the backend we’ve used mongodb. So we have the
flexibility to scale our application when it grows.
Since mongodb is schema less we have to have an application level schema to
facilitate our service. In order to do that we used Mongoose ODM

4.3. Authentication and Authorization

In the application, we use token based authentication and authorization.
To generate the auth tokens and validation we use JWT (json-web-tokens)

24

https://nodejs.org/en/
https://expressjs.com/
https://www.mongodb.com/
https://mongoosejs.com/
https://jwt.io/

4.4. Real Time Communication

To enable the real time communication though the application, we use socket.io

4.5. Main Solution Architecture

4.6. ER Diagram

25

https://socket.io/

4.7. Routing of a request through the application

26

5. Mobile Application

This mobile app is basically for the end customer of the restaurant. He can view
the food menu, place orders and pay using credit/debit cards from this mobile
app.

We have added some optional facility that is the Guest account option, where
you can place the orders without actually signing in with your personal account.

27

28

6. Web Application and Desktop Application

6.1. Design Architecture

29

6.2. Web Application of Owner

This Web Application is basically for the owner of the restaurant. The owner can
login using his credentials and view and manage information about the
restaurant using this web application. He can also review all the ongoing orders
easily using this application as well. The owner get notified about the current
status of the orders in the restaurant.

The web application is created using a responsive design and anyone can view
this application using any device without any hassle.

● We used React.js for the development of the web application. React can
build fast, scalable web applications due to its DOM rendering
architecture. And it also has a larger community support and a vast
number of libraries.

● Redux is used for state management.
● Axios is used for communication with the backend server.
● This is the UI of the restaurant owner. New orders, robot status, adding

items to the menu can be done via the web application.

Screenshots of the Web Application

30

31

32

33

6.3. Desktop Application of Operator

The Desktop application is for the operator of the restaurant. The operator
should login to this application using his credentials. Then he can accept and
confirm or cancel orders using this desktop application. He will get real time
notifications when a customer places an order, after the delivery is complete or
the delivery is affected by some obstacle.

This desktop application is developed in a way that it can be installed and used
in any operating system. You can install this application in Linux, Windows or
even in macOS as well.

● We used React.js for the development of the desktop application. React
can build fast, scalable web applications due to its DOM rendering
architecture. And it also has a larger community support and a vast
number of libraries.

● Redux is used for state management.
● Axios is used for communication with the backend server.
● Electron.js was used to build the cross-platform desktop application.
● This is the UI of the operator. Accepting orders, deploying robot and

changing item status can be done via the desktop application.

34

6.4. Communication inside the Desktop application

Desktop application mainly communicates with WaiterBots via the MQTT
protocol. There is a custom MQTT broker running inside the control unit and it
will connect to the desktop application via WebSockets.

When publishing and subscribing to the WaiterBots, the Desktop application
will use the following topics.

Subscribe:
operator/{shop_id}/#

Publish:
waiterbot/{shop_id}/{robot_id}

35

6.5. Operator UI

36

37

7. Testing

Mainly we are considering Integration testing and Unit testing. For unit testing
we are using jest.js framework.And for integration testing we are using
supertest with jest.js.

7.1. Software Testing Plan and Results

38

https://jestjs.io/
https://www.npmjs.com/package/supertest
https://jestjs.io/

7.2. Software Testing Screenshots

39

7.3. API Code Coverage Report

7.4. Mobile App Testing

40

7.5. Hardware Testing Plan

41

8. Deployment

8.1. WaiterBot API

- WaiterBot API is deployed on AWS.
http://waiterbot-api.us-east-1.elasticbeanstalk.com/api

8.2. Owner Web Application

- The WaiterBot Owner web application is deployed on heroku.
https://waiterbot-owner.herokuapp.com/menu

42

http://waiterbot-api.us-east-1.elasticbeanstalk.com/api
https://waiterbot-owner.herokuapp.com/menu

