
A Review on Existing Swarm intelligence
Programming Frameworks

S.M Ekanayake
Computer Engineering Department

Faculty of Engineering
University of Peradeniya
Peradeniya, Sri Lanka
e16094@eng.pdn.ac.lk

H.M.K Madhushanka
Computer Engineering Department

Faculty of Engineering
University of Peradeniya
Peradeniya, Sri Lanka
e16221@eng.pdn.ac.lk

A.L.H.E Perera
Computer Engineering Department

Faculty of Engineering
University of Peradeniya
Peradeniya, Sri Lanka
e16275@eng.pdn.ac.lk

Prof. Roshan Ragel
Computer Engineering Department

Faculty of Engineering
University of Peradeniya
Peradeniya, Sri Lanka
roshanr@eng.pdn.ac.lk

Dr. Isuru Nawinne
Computer Engineering Department

Faculty of Engineering
University of Peradeniya
Peradeniya, Sri Lanka

isurunawinne@eng.pdn.ac.lk

Dr. Sithumini Ekanayake
Computer Engineering Department

Faculty of Engineering
University of Peradeniya
Peradeniya, Sri Lanka

sithuminie@eng.pdn.ac.lk

Dr. Mahanama Wickramasinghe
Computer Engineering Department

Faculty of Engineering
University of Peradeniya
Peradeniya, Sri Lanka
mahanamaw.pdn.ac.lk

Abstract—This review address the main requirements that
benefits the researchers. Those main requirements are having a
compatible framework, tools that helps to implement the logic of
the swarm operations, and implementing swarm behaviors. Fur-
ther here discussed a code-less approach : a different approach
called Swarm UI implementation. Also another less heterogene-
ity hardware platform support called EmsBot but withstand
other swarm related issues such as real time operability, less
resource and memory consumption. Finally a better approach
is called EmSBotScript which supports heterogeneity among
other fixes for challenges mentioned above. Also a crucial aspect
is there when considering the swarm behavior modeling there
are approaches taken in simple algorithms like if and elses,
mathematical models and advanced algorithms based on graphs.
Here the identified characteristics each of the pros and cons and
the research gap is mentioned in the due review on each article.

Index Terms—search-surrounding swarm algorithm, target-
surrounding swarm algorithm, collective behavior, swarm
robotics, swarm intelligence, Kilobot, multi-robot autonomous
navigation and exploration, decentralized behaviors, heteroge-
neous robotic teams, over-the-air update,swarm systems, control
framework, swarm programming

I. INTRODUCTION

Swarm robotics is popular and gaining attention due to its
practical applications. Here the idea is to perform complex
collective behaviors using a large number of simple individual
robots. But programming such a distributed robot system is
quite complicated when increasing the number of the robots.

On the other hand in swarm robotic systems, communication
and coordination of the robots behavior is not done using a
centralized or hierarchical control communication system. This
makes programming swarm robots more difficult than other
multi-robot systems.

This literature review focuses at strategies used to develop a
framework for programming swarm robots in a novel approach
based on different techniques. The main obstacle faced during
this swarm project is to unify the heterogeneous swarm robots
in to a single unit for ease of operations. For that the underline
architectures of each robots must not depend on the software
framework following research shows the approaches took for
implementing swarm software framework for ease the problem
in the heterogeneity of the swarm robotic system as well as
address other related problems in the field of swarm robotics
such as maintaining concurrency, less consumption of memory,
resource utilization, manage scalability of the swarm robotic
system. These are covered under the following sections.

II. SWARM ROBOTICS

Swarm robotics is the study of how to use local rules to
control huge groups of robots. All the basic behaviors and
swarm robotic-related experiments are stated here.

For a very long time, the collective behaviors [1] of social
insects were thought to be weird and mysterious. Researchers
have shown in recent years that individuals can exhibit such
complicated behaviors without the assistance of advanced



information or representations. The concept of locality is the
basis for this interaction, and neither individual is aware of
the bigger picture.

The many experimental platforms, such as robotic platforms
and simulators, employed in the most relevant swarm-robotic
studies identified in the literature are described in this section.

This section features a selection of the most significant
experimental Swarm Robotics efforts. The various experimen-
tal findings are organized into groups based on the tasks or
behaviors that the swarms performed. Certain behaviors, such
as aggregation and collective movement [2], are extremely
simple and serve as a foundation for more difficult tasks. They
are given in order of increasing complexity.

1) Aggregation
• On simulated S-Bot robots, Trianni et al [3] experi-

mented with an evolutionary algorithm. The micro-
phones and proximity sensors are the sensory inputs.
The motors and speakers are the actuators. Although
their work is more on evolutionary algorithms than
on aggregation, Bahçeci and ahin [4] also apply
evolutionary algorithms and simulated S-bot robots
to produce scalable outcomes.

2) Dispersion
• Various researchers have researched dispersion us-

ing both real robots and simulation. Robots are
repelled by objects and other robots in Howard et al
[5] proposed field algorithm for the deployment of
robots. The above mentioned approach is distributed
and doesn’t need centralized localization, therefore
it may be scaled. However, the work is only con-
ducted through simulation.

3) Pattern Formation
• Martinson and Payton [6] describe a method that

generates square lattices using local control laws
acting on orthogonal axes and a common reference
orientation for the robots.

• A method for placing robots in various forms
and patterns determined by implicit functions is
displayed by Chaimowicz et al [7]. Robots posi-
tion themselves within the required contour using
a distributed strategy based on local knowledge.
Both simulated tests and actual robot testing are
conducted on algorithms.

4) Collective Movement
• A distributed method for collective movement based

on lattices is proposed by Lee and Nak [8]. The
Lyapunov theorem is used to demonstrate that it
converges. [9] proposes a decentralized algorithm
based on lattice forms for the collective movement.
In a specific scenario of research, the algorithm’s
stability is demonstrated. The plane is divided into
Voronoi regions to implement obstacle avoidance.

5) Task Allocation
• A distributed and scalable approach for labor di-

vision in robot swarms is presented by Jones and

Matari [10] Each robot autonomously conducts a
division of labor by keeping a history of the tasks
carried out by other robots based on observation. It
can then adjust its own behavior to fit this division.

6) Source Search
• In [11], the odor localization problem is addressed,

and robots search for the source of the odor using a
distributed method. Both real robots and simulations
are used in experiments.

7) Collective Transport of Objects
• The collective transport of prey by ants, in which

individuals wait for other mates if the object being
transported is too large, serves as inspiration for
Kube and Bonabeau [12]. In their studies, which
were carried out with actual robots, six robots were
able to work together to push an object in a purely
distributed manner.

8) Collective Mapping
• [13] describes a collection of algorithms for the

exploration and mapping of vast indoor regions
employing a significant number of robots. Up to 80
robots were used in their investigations, which take
up a 600m2space.

• In order to comprehend this area of multi-robot re-
search better, a brief introduction to swarm robotics
has been provided. The issue [14] has been in-
troduced in the initial parts, which also highlight
its key attributes and place the area in relation
to more broad multi-robotic systems. The primary
tasks, experimental findings, and platforms used in
swarm robotics have then been summarized.

III. ARCHITECTURE OF SWARM ROBOTICS SYSTEM
SOFTWARE INFRASTRUCTURE

Swarm robotics is a contemporary branch of robotics that
focuses on fully autonomous robots that lack a centralized
control system or shared body of knowledge. One of the most
frequent issues is the process of developing such systems; at
the present, there are no clear guidelines for designing and
modelling such systems, and there are no industry standards
for tools or software in the field of swarm robotics. From a
software engineering perspective, swarm robotic systems are
researched in this work. The goal of the study is to show
how a software engineering strategy can reduce the issue of
tight coupling between hardware platforms and swarm systems
by providing instructions and tools for producing high-quality
swarm robotic applications quickly.

The primary objective is to recommend appropriate method-
ologies and tools for developing, deploying, debugging, and
continuously supporting SRS (Swarm Robotic System) soft-
ware.

It should provide design and high abstraction layer mod-
elling methods, per the Analysis and Design discipline. Im-
plementation discipline states that: standard libraries of swarm
algorithms, machine learning, and genetic algorithms should



be provided; a framework for designing and developing stan-
dard swarm robotics problems (foraging, coverage, flocking,
etc.); and a set of abstractions for various communication
approaches should be provided (e.g. wireless and stigmergy). It
should offer logging and debugging tools, as well as profiling
and performance testing, following the Test discipline. It
should also offer visualization and simulation capabilities. It
should include tools to develop, deploy, and describe packages,
per the deployment discipline.

There are no SR standards in place at this time. The de
facto standard for the creation of software for general-purpose
robots is ROS, for instance, in the area of robot programming.

The fundamental concept is to move a temporary deliberator
to the server component for sequencer model training. Robots
that have been equipped with the trained model can operate
independently and provide as much data as feasible for the
model’s continued improvement. Therefore, it is suggested that
the controller and trained sequencer be mounted on the robot.

The deliberator should be a server software system that
accepts information from the robot sequencers about the
environment and enhances the robots’ current actions. It is
suggested that the development be divided into two phases:
2) The initial models are deployed and executed directly on
robots, and the server continues to improve the existing models
while allowing for the debugging of a system that has already
been deployed. 1) The server simulates robots on the basis
of a real stand, receiving real data about the environment and
forming the initial behavior model for robots.

The notion of swarm robotics, its primary issues, and
existing methods for SRS design and development have all
been studied in this article. The SRS software infrastructure
requirements and the software engineering methodology had
been laid forth. It had been suggested to use a hybrid ar-
chitecture and implement some SRS software infrastructure
components.

IV. SWARM BEHAVIOR MODELING

A. Swarm Behavior : A behavior-based strategy for single and
multi-robot autonomous exploration

[15] This research addresses a crucial challenge in the
swarm area in Swarm robots. That is autonomous navigation.
This article introduces a way of navigation which is based
on behavior along with an efficient data structure to avoid
previously visited areas by storing them. Based on the related
work the approach was frontier exploration which has no
need to structure the area of the robots are experimented.
Also the provided solution avoided the complexities such as
rubusting localization and mapping. Also address the issues
with implementations at that time. Like there are exploration
algorithms more machine learning based and there will be
a bidding process those complexities are avoided and less
complex implementations are defined in the article. Since
this approach was a simplified approach in exploration. This
solution may have issues with minimizing the uncertainties
like navigating more than one robot for the same unknown
location. Also this solution is using an external vision for

localization. Therefore some different but more accurate local-
ization techniques are missed. For example : Without external
equipment the robot swarm can localize an area using round
robin which is a decentralized peer to peer communication and
without centralized server. But this approach will be efficient
but make it more complex when identifying the workload
for the implementation. Considering the methodology of their
approach their behavior model introduces four behaviors along
with a resultant emergent behavior those are,

1) Avoiding obstacles : avoid the obstacles and similar
robots

2) Avoid Past : for gathering the newest location
3) Disperse : for executing a conditional disperse action
4) Explore : Wandering unknown locations according to

FSA (Finite State Automata)
Those above implementations are avoiding complex imple-

mentations by using if else ladders only. But it would be more
appropriate if all the behaviors can be linked using a FSA
(Finite State Automata). This may increase the complexity of
the problem that is gonna solve but it will be an expressive
implementation. Finally the approach taken in the article is
able to successfully decrease the computational complexity
using hash tables by saving known locations. In the articles
the robots are homogenous, therefore this work can more
extend to having virtual robots as well as for having different
architecture robots. This will create a challenge in maintaining
two code bases for robots. Because hardware robots have a
C++ related low level implementation and virtual robots have
Java based code base. In the Pera Swarm project perspective,
the exploration serves more efficiently and as well as less
complex. But configuring the robots, all the robots in the
mixed reality should be taken into consideration when creating
codebase/es.

B. Swarm Behavior : UAV Swarms Behavior Modeling Using
Tracking Bigraphical Reactive Systems [16]

This article suggests an approach based on bigraphs along
with tracking to model different tasks. Determining all possible
behaviors is the key function in this approach with some
arbitaries. Further the main goal is to find an algorithm
that determines all the possible scenarios should be there
on the swarm. Other than the functional requirements there
are non functional implementations such as making scalable,
automated and solving provided tasks. Unlike other research
articles this article models the properties and features of a
swarm of systems which can be highly effective in creating
a programmable model for implementing swarm behaviors.
Another key feature is this implementation’s coupling status.
This model is able to introduce new algorithms to the system
without affecting the current progress of the remaining parts of
the model. This is a best practice when it comes to testing the
behavioral model in some scenarios. Further in the modeling
of the swarm system the implementations could be able to
gain following features to the system. Firstly able to separate
the swarm behavior from the low level implementation details
of the hardware (in this case UAV drones). Secondly able to



isolate and abstract each of the drones, swarm of drones. The
ability to represent the whole automation structure and others
using a mathematical model (using a bigraphical pattern) helps
to determine the capability to automate the swarm behaviors.
Further the state behavior of this implementation adds another
feature to the system which is to deploy different swarm
behaviors. But since this approach is only tested for UAV
drones this approach has the limitations that are only limited
for UAV drones but with proper implementation this has
the capability to upgrade this research compatible with other
hardware multi robot systems. Further it is stated that this
approach is limited for specialized tasks only. This implies
having issues with the reusability for other tasks. Also it is
stated that implementing a behavioral policy for this approach
causes abnormalities and that each agent in the system can be
beyond the control of the designer. Further those controlling
or avoiding those anomalies are not present in the defined
article. Finally the localization is not well defined in the article
therefore there are some misconfusions when it comes to the
localization of each drone happening peer to peer or in a
centralized manner.

C. Decision making in heterogeneous robotics systems : ROS
and Buzz: consensus-based behaviors for heterogeneous teams
[17]

This research article mainly addresses the challenging parts
of a heterogeneous multi robot system. Which are the decision
making and controlling of a heterogeneous robotic system.
Further this explains why decentralized peer to peer commu-
nications make the embedded intelligence increase which can
result in a lack of memory to handle such operations. Further
this explains well with the buzz language how the standard
ROS systems will be able to operate successfully. But in the
Pera Swarm approach having a complexity in the domain of
the robot architecture that is the difference in the hardware
architecture even though this addressed by this solution the
next challenge is having virtual robots integrating into the
system as a result ROS system should be handled virtual robots
also they should be supported with the buzz language. The
combination of ROS systems with Buzz language is able to
create consensus behaviors in robot swarms. And ROSBuzz
will be a framework for programming such swarm intelligence
events. This implementation was successful for heterogeneous
multi robot systems because this framework is driven in a
virtual machine based environment. This enables the feature
that supports heterogeneous support.

D. Formations : Chain Formation in a Swarm of Robots

When navigating in an unknown environment it is crucial
for having a form of robots that will reduce the missing
undiscovered locations and localization of each robot can be
identified using a via the formation. This research empha-
sizes the approach of forming chains of robots to explore
the environment more efficiently. This research shows the
systematic approaches to form chains as well as the speed
of chain formation. Also this approach is capable and eases

the explorations and localization of robots as those robots
have such formations. Then considering the formation the
form of robots are analyzed and following formations are
considered. One is forming all the robots as a chain in one
direction. Another is the branching of those robots, along the
other branches. However Using these formations it is identified
that chain formation along one direction does not completely
cover the area. But it also has the capability to cover long
distances. Therefore a proper formation of robots must be
considered for swarm operations otherwise it will be very
difficult to automate each robot separately. This approach
will cause many problems like a lot of collisions, and re
exploring an discovered location. Robots are limited to one of
the small regions of the environment. Further this experiment
is based around a nest. All the robots are creating a chain
formation around the nest and exploring from the nest. But
this experiment is not designed to perform in an environment
with obstacles. Therefore the impact of the obstacles were
not considered. Further all the robots are forming a chain.
The most suitable approach is decentralized communication
but because of the close pattern followed by decentralized
communication and localization results in the robots being
limited into a single unit of area. Therefore the total area
covered by the robots at a particular time will be lower.

E. Target Searching Algorithms in physical and virtual en-
vironment : Comparison of the behavior of swarm robots
with their computer simulations applying target-searching
algorithms

This is an experiment on a virtual and real environment
for searching and surrounding a target. This experiment is
done emphasizing the both real and virtual simulations shows
how these searching algorithms work in real scenarios. Further
for experiments the swarm robots used in this work are the
Kilobots. Also this experiment did not use heterogeneous
multi robot systems because of the more scope regarding
the searching algorithms and surrounding the object tasks.
Further according to the search algorithm the number of search
patterns will be increased when the target is away from the
robots. This will delay the robot system. Also the number
of computations performed by the system will be increased.
Also the message passing is done via a centralized server this
is a useful and quick approach when it comes to developing.
Also simple is the development of such algorithms. And the
memory allocation for the project will be much lower.

F. Behavioural modeling based programming framework [18]

They provide a higher-level framework for swarm
robot programming in this research. The definition and
implementation of the behaviours in this framework are done
using a bottom-up, behaviour-based design approach.

Communication

A virtual pheromone-based communication technique is
used for the communication. It is made to work with IR



communication systems that have the ability to gauge the
strength and direction of incoming signals. According to Fig.
1, there are three main measures related to the communication
system.

Heading: Angle from the north direction to the robot
head measured counterclockwise. Bearing: The angle
between a robot’s heading and the distance line, measured
counterclockwise. Distance: The distance between the present
robot’s center and the place where the incoming signal came
from.

Programming Model

Behaviour programming and pheromone processing
are the two main divisions of the programming model.
Programming behaviour is possible with or without the usage
of states, depending on the user’s preferences. The complete
programming model is depicted in Fig. 2 by the interactions
between the core aspects, pheromones, behaviours, and states.
Only after receiving a stimulus pheromone message does a
robot modify its state. In some cases, a robot may change
specific behaviours but not changing states in response to
a pheromone communication. The robot remains in that
condition when receiving pheromone messages and engages
in the behaviours that are permitted in that state. New
pheromone types, states, and behaviours can be defined by
the user.

Built-in Behaviours

Based on the degree of robot engagement, these behaviours
are divided into four tiers. These are the categories:

Preliminary Behaviours: These preliminary behaviours don’t
require any communication with other robots. They are utilised
by a single robot for a variety of movements. The first tier of
the overall design hierarchy is represented by this. Couple be-
haviours: These are actions taken by only two robots, the active
robot and the neighbour robot. Neighbour Cluster behaviours:
An asset with more than two robots are referred to as a cluster.
The third level of the hierarchy is this. Global behaviours: The
bottom level behaviours already included in the library can be
used to generate these behaviours. The behaviour hierarchy’s
top layer is represented by this. From this research article,
we can take the above behaviour architecture directly to our
project development since they used bottom-up architecture in
their design.

G. Colias: An Autonomous Micro Robot for Swarm Robotic
Applications.

[19] In Robotic Swarm, we focus on controlling a large
number of individual robots to solve complex problems.
Swarm robotics and related research are done mainly by using
simulation software because of the hardware complexity of the
robots and the cost of the robot platforms. In this article, they
provide low-cost, open-platform autonomous micro-robots for

robotic swarm applications. By defining well-defined inter-
action rules for each individual robot, decentralized control
of the swarm can be achieved. These rules will be executed
continuously in an infinite loop in the individual robot. The
interaction between simple robots that lead to the collective
behavior of a swarm has an indirect impact on the behavior
of each individual robot. Thus, the homogeneity of the robot
platform is an important issue when executing robotic swarm
scenarios.

It is quite difficult to simulate such a vast number of robots,
and the results we got differ from what we would see in
actual robot trials. Therefore, a robot platform must have some
criteria such as low-cost design, long-term autonomy, long-
range communication, bearing, distance and obstacle detec-
tion, neighboring robot detection, fast motion, and open source
design. In this article, they developed the Colias platform to
meet the above-mentioned requirements.

Using various basic high-level functions, Colias pro-
vides simple programming and user-friendly implementation.
Swarm behaviors use sensors and communications in order to
make decisions. Decision making is done in two forms such
as calling a function and hardware modules. Colias uses GNU
compiler collection (GCC) for the compiling process. For the
swarm behavior colias implemented state-of-the-art swarm al-
gorithm (BEECLUST) with different population sizes. Below
diagram shows the algorithm which robots are followed.

When a robot detects an obstacle it rotates itself and
executes the obstacle avoidance routine. When a robot detects
another robot it stops and measures the illuminance of the
ambient light and uses that measured illuminance to calculate
waiting duration for the robot. When the waiting time is over
the robot takes a random degree turn and moves forward.

Using this open-hardware platform they did experiments
using hardware components which is much better than using
simulation softwares. This has been shown that the build robot
is capable of serving as an autonomous platform.

When we create the framework for modeling and program-
ming swarm robots, we can get the idea of modeling swarm
behaviors using high-level basic functions and combining them
to achieve more complex swarm behaviors. Also we can follow
the work they have done when developing colias and develop
high-level swarm behaviors like clustering, using proposed
collision detection and avoidance methods in this research
paper.

H. Cooperative Pollution Source Localization and Cleanup
with a Bio-inspired Swarm Robot Aggregation

Exploring dangerous and severe environments with robots
has the potential to greatly increase human safety. As an
example robot systems can be used to locate the source
of a chemical spill and clean the polluted region. In this
paper it provides a method to chemical leak detection and
cleanup scenario using robot swarm. When we consider an
extreme environment, most robots fail to give reliable results
for those environments with chemical and radiation contam-
ination. Since most of the multi-robot systems use wireless



communication methods to transfer data between themselves,
radiation sources can hamper wireless connections which will
make the robots ineffective. Using short range communication
techniques we can overcome this problem. In robot swarm
systems it uses inter-robot connection protocol which we can
use in this case.

Since a group of cooperating robots operates and has an
ability to complete a task at higher speed and it gives more
reliable decisions when compared to a single robot doing the
same task, researchers tend to use multi-robot systems and
divide the task between large numbers of simple robots and
achieve the task cooperatively.

In order to create a protocol by which several robots may
work together and finish a given task, robot interaction rules
and techniques must be defined. This will lead to high level
data transfer among robots and centralized decision making
centers. Many swarm behaviors inspired by social animals like
bees, ants etc. Such behavior we can identify is aggregation.
This can be defined as gathering individuals around an area.
Aggregation can be identified in two types. They are cue-based
aggregation and self aggregation. In extreme environments
cue based aggregation is more suitable since physical queues
are crucial in those situations. In this paper they use the
BEECLUST aggregation method as a basis to implement
the exploration system. Detecting and cleaning the source of
chemical leakage is the main goal of the robot in this scenario.
So robots have to find and reach the source and start cleaning
the area with the presence of other robots. State diagram for
the task can be defined as below.

When robot-robot collision happens, the robot waits a
random time based on the cue intensity that the senses. After
a timeout the robot turns at a random angle degree between
90 to 180 degrees and continues the initial task. In this paper
exploration scenario is implemented using mona robots and
simulation models are created using Webots software.

In this proposed method swarm robots are used to chemical
leakage localization and cleanup. It uses BEECLUST algo-
rithm and pheromone following behavior. Even Though we
could use the advantage of short range communications, when
leakage vanishes robot cooperation decreases and this might
be a disadvantage.

We can use the idea proposed in this article to model the
swarm behavior like find-and-rescue.

V. RECENT IMPLEMENTATIONS ON SWARM
PROGRAMMING FRAMEWORKS

A. An Actor-based Programming Framework for Swarm
Robotic Systems [20]

To describe the high-level virtualization for robot platforms,
where they develop the concept of the actor. Each created
Actor maintains a data structure, is bound to various plug-
in groups and serves as the fundamental building block for
the control of a group of behaviors. They suggest a system
for managing all Actors together. A swarm robotic system’s
robot platforms are efficiently structured. Actor-level synchro-
nization is one of the cooperative task primitives that evolved

automatically. Task creators can focus on intricate swarm
robotic task coordination tactics, instead of the tedious intrica-
cies of operating individual robots by using a domain-specific
language (DSL) to create Actor-based tasks. The suggested
framework is developed in C++, and both simulations and field
testing have been used to validate it both quantitatively and
qualitatively.

The suggested framework makes it simple for users to
manipulate one to many autonomous vehicles and offers a
reliable self-organization method for swarm robotic systems.

Actor Control Block (ACB) is the name of the data structure
that the Actor scheduler keeps for each Actor in this soft-
ware architecture. Basic Actor operations include start, stop,
pause, activate, and switch, and basic Actor attributes include
name, identification (ID), status, priority, software resources,
hardware resources, permission, task, relationship with other
Actors in the swarm, and statistical information at runtime.
These are all included in the ACB.

The “Actor” configuration is mostly used to configure the
actor information, such as the actor’s name, priority, and
necessary plug-ins. Task creators can add the configuration of
required Actors in robot swarms and select the appropriate
plug-ins for them. Distinct Actors will be given different
abilities by loading various plugins.

The introduced “Actor” based control unit helps to decouple
the high-level task programming with specific robot platforms.
Robots are able to autonomously behave, handle unusual situa-
tions, and network disturbances with the provided framework.

From this work they have done, we can take their ‘Actor’
based approach to our project as well. By using that, we can
use all the atomic swarm behaviors as the building blocks of
complex swarm behaviors. Since we are going to develop a
visual programming language, the language they have used
C++ is not appropriate for our work.

TABLE I
STATE OF THE ART FRAMEWORK

Framework Orchestration Type Testing envi-
ronment

Buzz Decentralized Heterogeneous Simulation
ROS Centralized Heterogeneous Real world

Karma Centralized MAVs Simulation
Voltron Decentralized,

Centralized
UAVs Simulation,

Real world
COMETS Decentralized UAVs Real world

Meld Decentralized Heterogeneous Simulation
PaROS Centralized UAVs Simulation,

Real world

B. Buzz: An Extensible Programming Language for Self-
Organizing Heterogeneous Robot Swarms [21]

In this study, they state that a DSL is an essential tool for
the deployment of actual robot swarms.

A DSL for robot swarms could serve as a platform that (i)
filters the low-level information about networking and space
in an effective, resource-conscious manner; (ii) provides a
coherent system abstraction; and (iii) serves as a standard



platform for benchmarking and code reuse. They introduce
Buzz, a unique DSL for robot swarms.

There are some essential requirements that a successful
swarm robotics programming language must satisfy. As was
previously said, the language must first empower the pro-
grammer to operate at an appropriate level of abstraction.
Second, the language must support compositional thinking by
offering predictable primitives that may be logically coupled
to create more intricate algorithms and constructions. Third,
the language must demonstrate that it is sufficiently general
to (i)express the most widely used swarm coordination algo-
rithms, such as task distribution, flocking, and collective de-
cision making; and (ii)support heterogeneous swarms. Fourth,
the language’s run-time platform must guarantee appropriate
levels of resilience and scalability.

This paper’s primary contribution is the design and imple-
mentation of Buzz, a programming language that satisfies the
aforementioned objectives.

Buzz allows the robots to be divided into numerous teams.
Each squad in Buzz is referred to as a swarm. A unique
identifier that is recognized and acknowledged by all the robots
in the newly established swarm is required by the programmer
in order to build a swarm. The result is a swarm-type class-like
organization.

The method exec() can be used to assign tasks to a swarm
after it has been generated.

// Join the swarm if the robot
identifier (id) is even

// ’id’ is an internal symbol that
refers to the numeric id of the robot
executing the script

s.select(id%2 == 0)

// Join the swarm unconditionally
s.join()

// Leave the swarm if the robot id is
greater than 5

s.unselect(id > 5)

// Leave the swarm unconditionally
s.leave()

// Check whether a robot belongs to s
if(s.in())...

// Assigning a task to a swarm
s.exec(function()...)

Buzz scripts are compiled using two tools: buzzc, an as-
sembler/linker, and buzzasm, a compiler.

There are more complex functionalities mentioned in their
article like neighbour operations, Virtual stigmergy, Collec-
tive decision making, Separating into multiple swarms, etc.

They introduced Buzz, a cutting-edge programming lan-
guage created for massive, diverse robot swarms. One of
the contributions of their work is a mixed paradigm for
robot swarm implementation, which enables the developer
to specify fine-grained, bottom-up logic as well as reason in

a top-down, swarm-oriented manner; another is the defini-
tion of a compositional and predictable approach to swarm
behaviour development, and a third is the implementation of
a general language capable of expressing the most typical
swarm behaviours.
As the inspiration for our research, we can use Buzz

programming language as a high-level language, but we need
to extend our project as a visual programming language.

C. GSDF: A Generic Development Framework for Swarm
Robotics [22]

“Generic development framework for swarm robotics” also
called as GSDF is,

1) Component based development scheme
2) Decentralized runtime and swarm programming inter-

faces
3) Completely compatible with ROS (ability to use ROS

ecosystem)
4) Flexible and extensible framework
In GSDF it has decentralized lightweight runtime which

maintains all swarm-related data and process messages. Other
than that it provides multiple programming interfaces and a
swarm library which will be easier to define swarm behaviors
using component based application development approach.

GSDP framework consists of several layers such as,
1) Application Layer + Library
2) Interfaces related to swarm behaviors
3) Runtime
4) Abstract communication Layer

In this framework runtime is responsible for maintaining the
entire swarm, swarm related data, individual swarm robots and
neighbor robots. This runtime is lightweight since individual
robot’s resources are limited. When discussing programming
interfaces and libraries in GSDP it is delighted by buzz
programming language. GSDF provides an efficient near-
range information sharing method called BlackBoard. It also
contains floking, particle swarm optimization like commonly
adopted algorithms for typical swarm behaviors. Extension of
the library is also possible.

Since this GSDP framework is fully compatible with ROS,
it also uses component based development which is recom-
mended by ROS 2.0.

This framework provides an abstract and unified communi-
cation layer, which encapsulates lower-level details of commu-
nication mechanisms. In the GSDF communication model it
has basic three functions like init(), broadcast(), receive(). Its
supports both ROS message protocols like TCPROS, UDPROS
and OpenSlice DDS.

In GSDF runtime each robot has an independent process
called “daemon node”. To identify robots uniquely it has
an integer Id. Daemon node is responsible for publishing
different kinds of messages in different frequencies and pro-
cess received messages accordingly. Output messages are put
into a specific output queue, which are scheduled using the
“Weighted Round Robin” strategy while input messages are



entered in the input queue in “First In First Out” manner
and scheduled sequentially. Also daemon nodes responsible
for maintaining all swarm related data such as individuals and
neighbors. For the programming framework it is enlightened
by the buzz framework. GSDF has similar programming inter-
faces like buzz, such as Neighbors, Swarm, Virtual Stigmergy.
They are implemented using C++ language and it uses object-
oriented programming for that.

D. Introducing requirements must be on a robotic software
framework by abstracting low level functions.

This is research based on swarms of UAVs. This research is
able to address the challenges in programming swarms. First
challenge is to make drones work in parallel and be able
to implement the program to be scale independent despite
the number of available drones. Further while execution on
events drones failures may happen. Therefore they must be
handled automatically. Also this describes the current state
of orchestrating swarms by programming each drone. This
research paper focuses more on the PaROS (Programing
Swarm) framework based on the programming primitive called
abstract swarm (a set of instructions that can be utilized for
simplifying programming drones of swarms).

Proposed frameworks for programming individuals or
swarms of drones are following.

The goal of this introduction of such a framework is to avoid
low level programming. It was avoided using programming
primitives by abstracting the implementation details of the
swarm robots. Abstract Swarm defines a set of operations to
simplify the programmability. A detailed representation of the
operations can be shown as below.

Following are the brief descriptions of the derived oper-
ations. Path Planning for determining the flight plan for a
single drone. pathPlanning() is invoked to determine flight
plans depending on the existing swarm drones. In the PaROS
framework there are two algorithms for PIA (Path Planning
Algorithm) and the nearest neighbor algorithm. Also the
framework is capable of overriding the developed pathPlan-
ning() for customizations. Under Points of Interest and Area
Declaration, programmers should be able to assign swarms in
the defined points and set priorities to the locations. So each
swarm is able to cover each of the areas according to the
priority level. Drone Enumeration is there for identifying each
individual drone and enabling communication between each
other drone. Another operation is task partitioning, there are
many activities needed to perform all the swarms. For that each
of the individual drones should be able to receive the tasks
which should be properly divided within available drones.
Therefore there should be a defined operation for separating
tasks within the swarm. Also there should be operations related
to events. Event handling operations, when a specific event
occurs operations should be implemented describing how the
drone should react. Finally operations like Failure Handler
must be present because if one drone fails to perform a task,
Another should be able to perform the same task for that
failure detection and correction should be there.

Experiments done with the drones tested the effectiveness
of the nearest neighbor algorithm and execution times were
lower. Further using PaROS execute a complete coverage path
planning algorithm. Finally shown some of the similar research
that is able to smooth the turns as well as reduce the number
of turns during an experiment. Programming with PaROS
shows the concept of abstract swarms. The programming
complexity is determined by the SLOCCount tool. For that
the experiment was aerial imagery (an experiment, drones
go to an assigned location and take an image and return
to the deployed area.). Here the communication between
the drone and the server is hidden. As a result, it is able
to lower the programming complexity. Therefore, according
to this research PaROS framework is able to simplify the
programmability of swarms of drones as well as individual
drones. Furthermore this framework is able to eliminate the
low level programming by introducing swarm abstraction like
programming primitives.

E. CrazySwarm : a python based approach for programming
swarm robots. [22]

In around 2015, very few (research) labs were able to
operate more than 10 robots due to high single-robot cost, high
engineering effort and limited reliability. Since this swarm
robotics topic has been more popular lately, many research
projects are happening around the world now. Crazyswarm is
one of them. It is a platform that allows you to fly quadcopters
in tight, synchronized formations.

When talking about its system architecture, it has tight
integration with motion capture systems (Vicon, OptiTrack,
Qualisys) and a custom, robust object tracker (a single marker
per CF is sufficient). In order to make it fast enough to serve
so many, they have optimized quite a bit for latency. They
introduced One-way data flow (broadcast communication) and
also implemented a native (C++) backend optimized for low
latency. It relies on on-board autonomy (state estimation,
planning, control) and works with the official firmware. From
the user’s point of view, the user doesn’t need to know
about these technical details. They can script into Crazyswarm
using python. It has an API which is optimized for swarms.
Also, they have introduced some tools for swarms (simulation,
visualization, battery check, reboot etc.)

Crazyswarm was initially built for motion capture systems,
but now it supports a wide range of localization systems.
Practically when they implement the system, they use a cen-
tralized approach. They implemented one big C++ application
which allows very low latency and few data copies in between.
However, Crazyswarm also uses an anti-ROS pattern under the
hood. And also they optimized low-level communication using
broadcasts and compressed radio packets.

Typically commercial motion capture systems are designed
for tracking humans (skeleton, face) or a few, large rigid bod-
ies. Crazyswarm developed a library called ‘libobjecttracking’
for custom frame-by-frame tracking. Crazyswarm supports
two different modes for rigid body tracking.



1) Tracking the Pose (Position + Orientation) of their robot:
uses Iterative Closest Point (ICP) algorithm.

2) Pure position tracking: uses Optimal Assignment algo-
rithm.

In both cases, the Dynamics filter (max a, v, ω) was used and
also initial position guess was required.

When comparing the first approach, the Tracking the Pose
method needs more markers on the robot and is less robust. But
as an advantage, the full pose can be tracked using this method.
In the second approach, Pure position tracking requires XY
movement to recover yaw, but only needs one marker on top
of the robot and is also more robust.

When talking about Crazyswarm tools, it has a python
script called ‘Crazyfile Chooser’ which allows users to get
a visualization of the initial positions of robots, enable/disable
crazyflies which users want to operate on, battery check and
reboot.

In terms of simulation, it uses the same script as used for
physical robots and users only need to add —-sim flag. It has
no ROS dependency and has Linux and Mac support.

F. Different approaches of a Swarm UI interface codeless
approach: a direct manipulation in the environment causes
behavioral changes in a swarm.

This research is based on creating a swarm user interface
using direct physical manipulation. The difference is other
frameworks using robotic programming frameworks. But in
this research rather than using those frameworks the aim is
to use the direct manipulation of objects. This approach is
based on current UI programming practices. That is creating
elements, abstract attributes, specify behaviors and propagate
changes. The main challenge is the limitation of this area
for highly skilled programmers who have good knowledge
in robotics programming. The reason is robot programming
focuses more on the low level programming in sensors and
actuators.

Direct manipulation refers here to moving any object in
the environment that results in a trigger to act as a swarm of
robots to do a certain task. Therefore there is no involvement
in the complex programming. Only there is the swarm UI
programming using the above steps described. Firstly, creating
elements by drawing and construction. Second is abstract
the attributes through demonstrations. Thirdly, specify the ex-
pected behavior. And finally propagate changes in the behavior
and how to react to those changes.

This research proves the usability of the concept of using
less programmability. This way is able to avoid programming
because this experiment defined model will react as the
environment is changed. Also since because of the high level
implementation the study participants most of them found it
difficult to predict program behaviors. Also this states that
increasing the number of robots causes errors that may result
in errors that cannot be considered negligible. This causes the
unique design of the environment for this research purpose.

G. A modular framework that supports limited architectures
of hardware called EmSBot

Robotics systems complexity is higher because of the ad-
vances in sensors, actuators and computer technologies. From
low level drivers to high level functions named planning and
navigation have to be dealt with even though robotic systems
are equipped with heterogeneous embedded processors. The
challenge required to overcome is the coordination and com-
munication when it comes to a swarm of robots. Because
of this difficulty in developing advanced complex robotics
applications from scratch a number of robotic software frame-
works are developed. The paradigm shared between all the
frameworks are the same. All of them are component-based.
This originated from CBSE (Component Based Software Engi-
neering). Using these principles enables robotic applications to
become loosely coupled. Using Robotic Software Framework
introduces better software quality, code re-usability and col-
laborative development. Using Robotic Software Frameworks
have the following requirements and challenges.

The major requirement is supporting multi hardware plat-
forms and operating systems. Further the consideration in the
resource constraints of those embedded systems should be
considered. However the framework must be able to abstract
the above requirement. Next challenge is to develop the
independence between communication networks and transport
protocols. The framework must be flexible enough to switch
between different network vendors. Another challenge is real
time support because most of the swarms operate in real
time therefore the communication must support real time
operations. The framework must withstand such coordination
the real time communication with the network layer. Also fault
tolerance support is also required the targeted framework must
have the simplification of the reconfiguration support. Finally
the simplicity and ease of use is another requirement when it
comes to software frameworks.

EmSbot Framework is introduced in this to support the
problem of communication transparency. The following archi-
tecture describes how the framework operates in one micro
controller-based robot.

Embedded modular component based software frameworks
such as EmSbot suitable for making resource contained
swarms of drone controls. Further OS abstraction extends
to work with other operating systems. Using a port based
mechanism is the method of exchanging messages between
agents. Because of this only approach the agents are able
to handle separately. Uniform message passing capabilities
provides this software framework the capability to operate real
time. Further this framework supports self fault handling as
well as other agent binded fault handlings which supports the
ease of fault handling. EmSbot is fully implemented using C
and very suitable for micro controller-based robotic systems.



H. EmSBotScript : A smaller virtual machine based software
framework for addressing most challenging aspects in pro-
gramming swarms robots.

To deal with the diverse and miniature hardware com-
ponents present in the swarm of robots, for handling such
heterogeneity developers adopt a VM (virtual machine) based
approach. Major challenge is that VM based systems are not
capable enough to handle resource constraints. The introduc-
tion of EmSBotScript, a small VM based software framework
is to address the above problem. EmSBotScript is able to sup-
port CPU independence, low memory footprint, concurrency
and synchronization. This was shown using programming
models, a script language and proposing VM architecture.

EmsBotScript is able to support cross platform support, this
solves the heterogeneity problem. Also simplifying the codelet
functions is able to support concurrency. For reducing memory
usage implementing event - based synchronizations are helpful
and use hardware virtual paging mechanisms. Furthermore
stack paging is proposed.

VI. VISUAL PROGRAMMING APPROACHES

A. A Survey on Visual Programming Languages in Internet of
Things [23]

Visual programming plays a key role when considering user
interaction in today’s software industry. Visual Programming
Language (VPL) lets user creates a program by manipulating
elements graphically. Many VPLs are uses graphical shapes
or blocks to represent entities while enabling the addition of
relationships between them. VPLs are used in many fields such
as education, multimedia, video games, simulation automation,
data warehousing etc. Examples of visual programs can be
identified as Scratch, Pure Data, Unreal Engine, VisSim,
CiMPLE, etc. Even though VPLs are shredded in various
domains, the field of IoT is still far behind compared to
other sectors. IoT mainly focused on the interconnection
between several heterogeneous objects or “things”. It refers
to a variety of heterogeneous hardware platforms with micro
controllers for the creation of different applications. These
platforms more often have a dedicated Integrated Development
Environment (IDE) and separate programming language which
raises difficulty when writing a program. VPLs are developed
to ease programming hardware platforms with drag and drop
components or blocks. This doesn’t require much knowledge
of the programming language.

There are a few VPL open source platforms for IoT de-
velopment such as Node-Red, NETLab Toolkit, Ardublock,
Scratch for Android, Modkit, MiniBloq, and NooDL. Some
of the VPLs mentioned above are desktop environments and
some of them are web-based VPL environments. Also, there
are a few proprietary VPL platforms such as DGLux5, AT and
T Flow Designer, Reactive Blocks, and GraspIO.

There are a few challenges associated with the integration
of VPLs with the Internet of Things.

1) Extensibility
We know VPLs are scoped to a very limited set of

operations. Also, some edge cases are extremely difficult
or impossible to implement in VPL.

2) Slow code generation
In IoT, it can engage with a large number of devices.
It is necessary to detect and solve the problems. Due to
the fact that VPL results in slow code generation, it is
really hard to optimize by a developer.

3) Integration
To leverage the ease of programming Integrated De-
velopment Environments and Visual Programming Lan-
guages should be designed together.

4) Standard Model
Different service professionals address modeling a prob-
lem in a different manner. Hence there is a strong need
for a standard model structure for the VPLs.

5) Abstraction
VPLs are made to better show and interact with the
current abstractions. It allows developers to control
something logical and challenging.

6) User Interface
VPLs in IoT brad to categories for different situations
such as for non-programmers, program learning environ-
ments, and advanced data flow aggregators.

In conclusion, VPLs help to visualize the program logic.
Also helps users to develop the programs without worrying
about textual programming. On the other hand, it has less
burden over handling syntax errors. But this will take a larger
amount of time spent just to write a basic and small application
or a program.

For the swarm intelligence framework, we can get the idea
of VPL and simplify the overall swarm behaviors through a
visual interface rather than going for low-level complexities.

B. Smart Block: A Visual Programming Environment for
SmartThings

This article proposes a visual block language called “Smart
Block for IoT” which mainly focuses on SmartThings. [24]
When designing the visual block language they based it
on IoTa calculus. It is a core calculus for IoT automation
that generalizes Event-Condition-Action (ECA) rules. Visual
programming language makes programming easier by manipu-
lating programming elements graphically, so users don’t have
to specify the program textually. Even though the fact that
users are not good at programming, visual block language
enables the ability to write a program and build SmartApps by
dragging and dropping blocks in the environment. When im-
plementing the visual environment, they used google blockly.
Blockly developer tool helps to design custom blocks and
implement the code generator, which translates blocks into
textual codes. SmartApp interacts with the devices through
events and in the meantime, it subscribes to events and takes
action by invoking event handlers. After building the blocks in
the environment properly, the compilation process takes place.
It is a two-pass approach. First, it generates an Abstract Syntax
Tree (AST) for blocks then the code generator takes care of
the actual code generation as below.



There are several visual languages for programming IoT ap-
plications like Node-RED, Scratch for Arduino, BlocklyDuino,
etc. On the other hand, Smart Block is a block-based visual
environment for SmartThings.

This approach enables users to program SmartThings visu-
ally, which is more practical when the user is not very good
at writing programs textually. And this makes the program to
be syntactically correct, but the downside of this approach is
it needs to go through some processing to generate the actual
code for the hardware, which takes more time.

When building the Swarm Intelligence Framework, we can
use the idea of a visual tool for modeling the swarm behaviors.
We can represent Swarm behaviors using blocks and switch
from one behavior to another by Event-Condition-Action rules.

C. Flowboard: A Visual Flow-Based Programming Environ-
ment for Embedded Coding [25]

In many fields such as science, technology, engineering,
and mathematics, embedded programming become an im-
portant part. Learning embedded programming requires both
hardware electronic-related knowledge and coding knowledge
and skills. This article tries to understand if the visual flow-
based approach can help to develop embedded programs rather
than the usual imperative programming paradigms. In the
traditional embedded programming approach user needs to
type their program as a sequence of statements. This will
not only require the programming languages but also leads to
syntax errors. Also, block-based programming environments
like scratch provide a graphical editor so the user can assemble
the program using visual blocks. In a flow-based programming
approach, programs are not sequences of commands. It uses a
network of processing nodes through which the data flows and
is manipulated. In FBP, parallel processing in one program is
pretty straight forward unlikely in imperative programming.
Flow-based approaches are used in many commercial IDEs in
many domains. As an example, we can show LabView and
Max/MSP IDEs. Many FBP-based embedded environments
like Microflo and XOD have two missing aspects. They are
liveness and Seamlessness. In flow-board it addresses this live-
ness and seamlessness which is more challenging to address
using imperative programming environments. Flowboard [26]
contains an Arduino Uno board and another micro-controller
with 18 electronic switches. Users can create programs using
the visual, flow-based editor on the iPad. They can drag nodes
into the visual editor and link those nodes together by virtual
wires between them.

In this, it tries to use a flow-based approach for program-
ming embedded devices, which is more effective for the end
user. The user doesn’t need to write the program manually in
a textual representation. This helps users to develop embedded
programs even though they don’t have skills in programming.
Also swarming strategies [27] is also need abstract from the
VPLs.

Also abstracting required forming pattern in swarm oper-
ations the formation would be a good strategy when finding

objects there fore form patterns [28] and algorithms play a
major role.

When developing the swarm intelligence framework, we can
get the idea of a flow-based approach since we can easily
model the swarm behaviors and transition from one swarm
behavior to another together with a help of a state machine.
[29] [30]

VII. CONCLUSION

According to above particulars we observed in order to
have a software framework should be loosely coupled between
different communication nodes.In the GSDF framework, the
objective is similar to ours which is to build a swarm pro-
gramming framework to easily build programmes for swarm
robots. We can study and analyze how ROS integrated into
this framework and how they use ROS features and also
we can follow similar kinds of communication layer ab-
straction and all. But what was missing here is how we
can support different microcontroller architectures when we
are programming. Such as if we wrote a program for the
Atmel family microcontroller, how we make it compatible with
another kind of microcontroller such as ESP family or PIC
microcontroller family. A requirement of the abstraction by
hiding low level functionalities and adjustments in the software
framework. Different approach ‘Direct manipulation’ for code
less approach implemented to reduce the complexity. EmSBot
is able to withstand a small number of hardware platforms.
Also it is able to handle resource constraints and real time
operability issues. And finally EmSBotScript which is a virtual
machine based approach that solves the major problem of
heterogeneity and various other memory related issues with
fault tolerance. After investigating the above approaches, a
virtual machine based approach such as EmSBotScript is
the more convenient way suitable considering the software
framework for the swarm robotic project.

REFERENCES

[1] Navarro, I naki, and Fernando Mat ıa. ”An introduction to swarm
robotics.” International Scholarly Research Notices 2013 (2013).

[2] E. S ahin, “Swarm robotics: from sources of inspiration to domains of
application,” in Swarm Robotics Workshop: State-of-the-Art Survey, E
S ahin and W. Spears, Eds., Lecture Notes in Com- puter Science, no.
3342, pp. 10–20, Berlin, Ger- many, 2005.

[3] V. Trianni, R. Groß, T. H. Labella, E. S ahin, and M. Dorigo, “Evolving
aggregation behaviors in a swarm of robots,” in Proceedings of the 7th
Eu- ropean Conference on Artificial Life (ECAL ’03), W. Banzhaf, T.
Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, Eds., vol. 2801 of
Lecture Notes in Artificial Intelligence, pp. 865–874, Springer, Hei-
delberg, Germany, 2003.

[4] E. Bah ceci and E. S ahin, “Evolving aggre- gation behaviors for swarm
robotic systems: a sys- tematic case study,” in Proceedings of the IEEE
Swarm Intelligence Symposium, pp. 333–340, June 2005.

[5] A. Howard, J. Maja Mataric, and S. Gau- rav Sukhatme, “Mobile
sensor network deploy- ment using potential elds: a distributed, scal-
able solution to the area coverage problem,” in Proceedings of the 6th
International Symposium on Distributed Autonomous Robotics Systems
(DARS02), Fukuoka, Japan, June 2002

[6] E. Martinson and D. Payton, “Lattice for- mation in mobile autonomous
sensor arrays,” in Proceedings of the Swarm Robotics Workshop: State-
of-the-art Survey , E. S ahin and W. Spears, Eds., no. 3342, pp. 98–111,
Berlin, Germany, 2005.



[7] L. Chaimowicz, N. Michael, and V. Kumar, “Controlling swarms of
robots using interpolated implicit functions,” in Proceedings of the IEEE
In- ternational Conference on Robotics and Automa- tion (ICRA ’05) ,
pp. 2487–2492, April 2005.

[8] G. Lee and Y. C. Nak, “Self-configurable mobile robot swarms with
hole repair capabil- ity,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Sys- tems (IROS ’08), pp.
1403–1408, September 2008.

[9] M. Lindh e and K. H. Johansson, “A forma- tion control algorithm using
voronoi regions,” in CTS-HYCON Workshop on Nonlinear and Hybrid
Control, 2005.

[10] C. Jones and M. J. Matari c, “Adaptive division of labor in large-scale
minimalist multi- robot systems,” in Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 1969–1974,
Las Vegas, Nev, USA, October 2003.

[11] A. T. Hayes, A. Martinoli, and R. M. Goodman, “Swarm robotic odor
localization: off- line optimization and validation with real robots,”
Robotica, vol. 21, no. 4, pp. 427–441, 2003

[12] C. R. Kube and E. Bonabeau, “Coopera- tive transport by ants and
robots,” Robotics and Autonomous Systems , vol. 30, no. 1, pp. 85–101,
2000.

[13] A. Howard, L. E. Parker, and G. S. Sukhatme, “e SDR experience:
experiments with a large-scale heterogeneous mobile robot team,”
in Proceedings of the th International Symposium on Experimental
Robotics, pp. 121–130, Singapore, June 2004.

[14] M. A. Efremov and I. I. Kholod, ”Architec- ture of Swarm Robotics
System Software Infras- tructure,” 2020 9th Mediterranean Con-
ference on Embedded Computing (MECO), 2020, pp. 1-4, doi:
10.1109/MECO49872.2020.9134247.

[15] Cepeda, J. S., Chaimowicz, L., Soto, R., Gordillo, J. L., Alanı́s-Reyes, E.
A., & Carrillo-Arce, L. C. (2012). A behavior-based strategy for single
and multi-robot autonomous exploration. Sensors, 12(9), 12772-12797.

[16] Cybulski, P., & Zieliński, Z. (2021). UAV swarms behavior modeling
using tracking bigraphical reactive systems. Sensors, 21(2), 622.

[17] St-Onge, D., Varadharajan, V. S., Li, G., Svogor, I., & Beltrame, G.
(2017). ROS and Buzz: consensus-based behaviors for heterogeneous
teams. arXiv preprint arXiv:1710.08843.

[18] Dassanayaka, M., Bandara, T., Adikari, N., Nawinne, I., & Ragel, R.
(2020, July). A Programming Framework for Robot Swarms. In 2020
Moratuwa Engineering Research Conference (MERCon) (pp. 578-583).
IEEE.

[19] Yi, Wei, et al. ”An actor-based program- ming framework for swarm
robotic systems.” 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020.

[20] Pinciroli, Carlo, and Giovanni Beltrame. ”Buzz: An extensible pro-
gramming language for heterogeneous swarm robotics.” 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016.

[21] Chang, X., Cai, Z., Wang, Y., Yi, X., & Xiao, N. (2017, August). GSDF:
A generic development framework for swarm robotics. In International
Conference on Intelligent Robotics and Applications (pp. 659-670).
Springer, Cham.

[22] Preiss, J. A., Honig, W., Sukhatme, G. S., Ayanian, N. (2017, May).
Crazyswarm: A large nano-quadcopter swarm. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA) (pp. 3299-3304).
IEEE.

[23] Ray, Partha Pratim. ”A survey on visual programming languages in
internet of things.” Sci- entific Programming 2017 (2017).

[24] N. Bak, B. Chang and K. Choi, ”Smart Block: A Visual Programming
Environment for SmartThings,” 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMP- SAC), 2018, pp. 32-
37, doi: 10.1109/COMP- SAC.2018.10199.

[25] Anke Brocker, Simon Voelker, Tony Zelun Zhang, Mathis M uller, and
Jan Borchers. 2019. Flowboard: A Visual Flow-Based Programming
Environment for Embedded Coding. In Ex- tended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems (CHI EA
’19). Association for Computing Machin- ery, New York, NY, USA,
Paper INT019, 1–4. https://doi.org/10.1145/3290607.3313247
—-change from here —-

[26] Hunt, E. R., Jones, S., Hauert, S. (2019). Testing the limits of
pheromone stigmergy in high-density robot swarms. Royal Society open
science, 6(11), 190225.

[27] Zhong, V. J., Dornberger, R., & Hanne, T. (2018). Comparison of the be-
havior of swarm robots with their computer simulations applying target-

searching algorithms. International Journal of Mechanical Engineering
and Robotics Research, 7(5).

[28] Gambardella, M. D. L. M., Martinoli, M. B. A., & Stützle, R. P. T.
(2006, September). Ant colony optimization and swarm intelligence. In
5th international workshop, Springer.

[29] Arvin, F., Murray, J., Zhang, C., & Yue, S. (2014). Colias: An au-
tonomous micro robot for swarm robotic applications. International
Journal of Advanced Robotic Systems, 11(7), 113.

[30] Amjadi, A. S., Raoufi, M., Turgut, A. E., Broughton, G., Krajnı́k,
T., & Arvin, F. (2019). Cooperative pollution source localization and
cleanup with a bio-inspired swarm robot aggregation. arXiv preprint
arXiv:1907.09585.


