Swarm Intelligence Programming Framework

TEAM MEMBERS

Ekanayaka S.M. Madushanka H.M.K. Perera A.L.H.E.

E/16/094 E/16/221 E/16/275

Supervisors

Prof. Roshan Ragel DR. Isuru Nawinne Dr. Mahanama Wickramasinghe Dr. Sithumini Ekanayake

INTRODUCTION

INTRODUCTION

PeraSwarm is a robotic multi-agent systems testbed with different types of robot hardware, virtual robots and a simulation environment.

This project will focus on building a high-level programming and compiler framework which will support multiple different types of robot hardware (real and virtual).

MOTIVATION

- Robot having same functionalities but with different hardware architectures are not compatible with the existing swarms.
- Setting up each of the robot agent for swarm researches is difficult due to individual attention to each of the robot.
- Make swarm robot systems ready for experiments in a small amount of time.
- Implementing a visual programming interface

METHODOLOGY

METHODOLOGY

- 1. Implement the remote compilation
- 2. Testing algorithms implemented based on FSMs.
- 3. Implementing complex behaviours by aggregating several FSMs.
- 4. Code generation and upload code to each robot.

MILESTONES

MILESTONES

- 1. Remote Cross Compiler Development
- 2. Algorithms development and testing
- 3. Finite State Machines (FSMs) Testing
- 4. Aggregator FSM Testing
- 5. Code Generation and Uploading to Robots
- 6. Testing SAR (Search and Rescue) on Arena

ANALYSIS

Framework	Orchestration	Type of Robots	Testing Method
Buzz	Decentralized	Heterogeneous	Simulations
ROS	Centralized	Heterogeneous	Real
Karma	Centralized	MAVs	Simulations
PaROS	Centralized	UAVs	Real / Simulations

EXISTING FRAMEWORKS (CONTINUE)

Framework	Orchestration	Type of Robots	Testing Method
CrazySwarm	Centralized	Homogenous	Real
EmsBot	Centralized	Heterogeneous	Simulations
EmsBot Script	Centralized	Heterogeneous	Simulations

- 1. Actor based Programming Frameworks
- 2. Domain Specific Languages
- 3. Frameworks based on CBSD
- 4. Anti-Ros Pattern based approaches
- 5. UI based codeless programming approach
- 6. Virtual Machine based programming frameworks

- 1. ACTOR BASED PROGRAMMING FRAMEWORKS
- Decouple high level task programming instead individual robot programming
- Intricate only task coordination
- Different plugins defines different robots

- 1. Actor based Programming Frameworks
- 2. Domain Specific Languages
- 3. Frameworks based on CBSD
- 4. Anti-Ros Pattern based approaches
- 5. UI based codeless programming approach
- 6. Virtual Machine based programming frameworks

- Ex: Buzz, ROS, Karma, PaROS
- Neighbouring operations, virtual stimergy, collective decision making
- PaROS
 - Abstract Swarm as the Actor
 - Support Drone Enumeration,
 - Task partitioning, Path planning, fault detection, correction

- 1. Actor based Programming Frameworks
- 2. Domain Specific Languages
- 3. Frameworks based on CBSD
- 4. Anti-Ros Pattern based approaches
- 5. UI based codeless programming interface
- 6. Virtual Machine based programming frameworks

3. FRAMEWORKS BASED ON CBSD (COMPONENT BASED SOFTWARE DEVELOPMENT)

- Used component based approaches.
- GSDF Generic Development Framework for Swarms
 - Compatible with ROS
- EmSBot Modular based Framework
 - Consider resource constraints
 - Real time support

- 1. Actor based Programming Frameworks
- 2. Domain Specific Languages
- 3. Frameworks based on CBSD
- 4. Anti-ROS Pattern based approaches
- 5. UI based codeless programming approach
- 6. Virtual Machine based programming frameworks

4. ANTI-ROS PATTERN BASED APPROACHES

- Python based robot programming framework CrazySwarm
- Support only homogenous robots swarms
- Optimized and Low latency communication

- 1. Actor based Programming Frameworks
- 2. Domain Specific Languages
- 3. Frameworks based on CBSD
- 4. Anti-Ros Pattern based approaches
- 5. UI based codeless programming approach
- 6. Virtual Machine based programming frameworks

5. UI BASED CODELESS PROGRAMMING INTERFACE

- Reactile Project Physical manipulations to swarms
- Used UI programming practices.
- Less programming required for users.

- 1. Actor based Programming Frameworks
- 2. Domain Specific Languages
- 3. Frameworks based on CBSD
- 4. Anti-Ros Pattern based approaches
- 5. UI based codeless programming approach
- 6. Virtual Machine based programming frameworks

6. VIRTUAL MACHINE BASED PROGRAMMING FRAMEWORKS

- EmSBot Scripts framework
- Solve heterogeneity problem
- Address implementation challenges
 - Concurrency using codelet functions
 - Reduce memory consumption using virtual pagination.

VISUAL PROGRAMMING LANGUAGES

- Visualize programming logic achieve simplicity..
- Less burden handling syntax errors.
- Existing VPLs
 - Smart Blocks Event Condition Action
 - Flow Board using visual flows

SWARM BEHAVIOR IMPLEMENTATIONS

- Bottom up behavior modeling approaches are considered.
- Behavior programming State machines
- Pheromone Communication Flow chart
- Provide freedom to introduce new behaviors.

State Machine – Behavior

FlowChart – Change behavior

WORK ON THE PROJECT SO FAR

BOTTOM-UP APPROACH OF SWARM BEHAVIOURS

SWITCHING BETWEEN BEHAVIOURS?

• •

- How new robots are introduced into the swarm having same functionalities but different hardware architectures?
- Introduce virtual robots into the swarm.
- Configure the robots over the air?

- Framework should be able to abstract the underlying hardware architectures.
- More behaviors integration provides more benefits for research purposes.
- Providing VPLs enhance the simplicity and usability of the programming framework.

