HAZARD HANDLING

There are three major types of hazards.
1. Data Hazards
2. Control Hazards
3. Structure Hazards

In our five-stage pipeline design, there are no structure hazards because we have implemented
in order execution architecture. So, there is no resource sharing happening in our pipeline.

e Data Hazard Handling

Data hazards mean the data dependencies between instructions. We have
implemented two forwarding units inside stage three and stage 4. There are
several methods to handle data hazards. The easy and basic method is to insert add x2, x2, 34
bubbles into the pipeline if there are data dependencies. This is an easy sub x3, x1, x2
approach, but this method decreases the efficiency of the pipeline. The second

method is to use forwarding methods. That means taking the ALU results from

stages 4 and 5 as operand 1 and operand 2 in the execution stage. The

following diagram shows the results that should be forwarded in order to handle

the dependency data hazards.

Clock cycle
1 2 3 4 5 6 7 8 9
sub $2,81,83 | IF | ID | EX |MEM | W
/ I
and $12, 52, $5 L IF_| ID4T EX]/MEM_\\WB |
or 513, $6, 2 | IF | ID¥ EX| MEM | WB |
add $14, 52, 52 F | DY EX | MEM | WB |
sw $15, 100(52) CIF | IDT| EX | MEM | WB |

The following diagram shows how we handle the forwarding in various stages.

stib $2.61.%3 (™ .

and $12, 52, $5 M

Reg

or $13, $6, $2

The following diagram shows the data and control path with the whole CPU with forwarding
units.

Stage 3 (Execution Stage) forwarding unit

This forwarding unit keeps the eye on operand 1 and operand 2 and checks whether there are
new values for those lines in Stage 4 or Stage 5. If that is the case the forwarding unit sends the
signal to the Hazard Handling Muxes in operand 1 and operand 2 data paths.

Data dependency could happen even between 3 stages apart. To be more clear, data
that are in the write back stage are not written to the reg file while the instruction at the decode
stage fetches old data from the reg file. Therefore the forwarding unit should forward the data
that is currently in the writeback stage at the next clock edge. Since there is no buffer to hold the
data that will be omitted from the stage 5 (WB) pipeline register. To hold those data an additional
pipeline register set was used.

The inputs to and the outputs from the hazard handling units are as mentioned below.

I | .
INST[19:15] INST[24:20] . - .
ADDR1 ADDR2 | J
FORWARDING UNIT
Pl o ; A :' o STAGE &
..... STAGE 5
MRS | STacE 5_ex
operand 1 forwarding MUX operand 2 forwarding MUX
00 Regular Value 00 Regular Value
01| Forwarded Stage 4 01| Forwarded Stage 4
10| Forwarded Stage 5 10| Forwarded Stage 5
11| Forwarded extra stage 11| Forwarded extra stage

Stage 4 (Main Memory access Stage) forwarding unit

This forwarding unit keeps the eye on hazards happening in stage 4. The only instruction
sequence that causes a hazard in this stage is the following.

1w x3, 8(x0)
sw X3, 8(x0)

DM

lw 0(52) M Reg_ I || | _|Reg

SWwW $1 y 0(54) | IM |4 |- Reg L | | DM Reg

The inputs and the outputs from the stage 4 forwarding unit is given below in the diagram.

FORWARDING UNIT

MEM_READ DS i——
S5

R s s MEM_WRITE
Sk

MUX_OUT

stage 4 forwarding unit

0|Regular value

1|stage 4 MEM READ

The only data dependency Hazard which cannot be handled by
forwarding

The load use Hazard cannot be resolved by forwarding because when the data loading gets
completed the following instruction is completed in his execution stage and moved to the
memory access stage. We cannot handle this situation other than putting a nop instruction in
between the instructions.

1w x3, 8(x0)
add x4, x3, x2

e Control Hazard Handling

Control hazards occur when the instruction flow is diverted because of branching. In order to
handle this hazard we have to flush a few pipeline stages. We have connected the first two
pipeline registers flushing lines. If the branch control unit decides the current instruction as a
branch, then the first two pipeline registers get flushed so the two instructions loaded before the
jump instructions are flushed.

| [

INST[19:45] INST(24:20] .
ADDR1 ADDR2

T !

FLUSH PIPELINE REG

BRANCH_MUX_0OUT

