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I. INTRODUCTION

Side channel attacks can be used in extracting sensitive
information from cryptographic systems. These attacks exploit
various factors such as power consumption, timing infor-
mation, and defective computations to reveal the secrets of
a cryptosystem. Correlation Power Analysis (CPA) [2] and
Different Power Analysis (DPA) [1] are major side channel
attacking techniques. They have been successfully executed
across a wide range of devices, from small chips to complex
systems characterized by noisy power measurements and in-
tricate parallel operations.

The correlation factor between power consumption and
the Hamming Distance plays a crucial role in side channel
analysis, as there is an obvious relationship between power
consumption and the Hamming Distance. Power consumption
tends to increase when bits transition within transistors, re-
sulting in higher power consumption compared to unchanged
bits. By monitoring power measurements during cryptographic
operations and considering the Hamming Distance for the
process, there are ways to exploit side channel attacks. Un-
derstanding and analyzing this correlation factor allows for
quantifying the degree of linear correlation and its implications
for extracting sensitive information from side channels.

Cryptographic algorithms, such as Advanced Encryption
Standard (AES), Elliptic Curve Cryptography (ECC), and RSA
are found vulnerable to power analysis attacks despite being
widely considered secure. Countermeasures to mitigate these
attacks have been suggested, emphasizing the need for a com-
bination of techniques to ensure the security of cryptographic
systems.

FPGAs (Field-Programmable Gate Arrays) are re-
configurable hardware devices that allow for the

implementation of digital circuits. Due to their flexibility
and programmable nature, FPGAs are commonly used in
various fields, including cryptography and security. The
highly parallel nature of FPGA architectures, combined
with their ability to perform rapid and precise operations,
can inadvertently lead to unintended side channel leakage,
which can be exploited to extract sensitive information.
On-chip voltage sensors, such as Time-to-Digital Converters
(TDC) [4], [16] and Ring Oscillator-based (RO) sensors
[14], [15], are employed to monitor power fluctuations and
detect potential voltage-related issues that can impact power
consumption and circuit performance. The utilization of
these sensors facilitates the extraction and transmission of
internally-measured side channel leakages, enhancing the
understanding of power consumption patterns within the
system.

The concept of FPGA-based side channel attacks plays
a vital role in different scenarios where these attacks can
occur, including Intra-FPGA Attacks, Inter-chip Attacks, and
Heterogeneous Chip Attacks [14]. The ability to execute
side channel attacks without physical access or specialized
equipment raises concerns regarding the security of multi-user
FPGA environments and emphasizes the need for effective
countermeasures.

Machine learning techniques have emerged as powerful
tools in the context of CPA attacks. By leveraging the ca-
pabilities of machine learning algorithms, researchers have
achieved notable success in extracting sensitive information
from side channels. These techniques involve training models
on a large dataset of power traces, enabling them to learn
patterns and correlations between power consumption and the
underlying data. Through machine learning algorithms, it is
able to accurately predict secret information, even in complex



cryptographic systems. The integration of machine learning
with CPA attacks opens up new avenues for advancing the
field of side channel analysis and underscores the importance
of robust countermeasures to safeguard cryptographic systems
against such attacks.

Low-performance devices, such as Internet of Things (IoT)
devices, may employ cryptographic algorithms for various
purposes. The utilization of lightweight ciphers like Simon
[22] and PRESENT [21] is prevalent due to their efficiency
on resource-constrained platforms. However, it is crucial to
acknowledge the inherent vulnerability of IoT devices, as they
often lack robust security measures. Given the susceptibility of
lightweight ciphers to potential attacks, it becomes important
to actively identify vulnerabilities within these cryptographic
implementations. Consequently, appropriate countermeasures
can be devised and implemented to mitigate the risks associ-
ated with these devices.

II. LITERATURE REVIEW

A. Power Analysis

The power consumed by a circuit is influenced by the
activity of its individual components, including transistors.
Consequently, when measuring the power usage of real-world
computers or microchips, valuable insights can be gained
regarding the operations and data being processed. Traditional
cryptographic designs have operated under the assumption
that secrets are manipulated within environments that provide
no additional information beyond the specified inputs and
outputs. However, the analysis of information leaked through
power consumption and other side channels, with the aim of
extracting secret keys from a diverse range of devices. These
attacks are practical, non-invasive, and remarkably effective,
even when targeting complex and noisy systems where cryp-
tographic computations constitute only a small fraction of the
overall power consumption [1].

Modern ciphers are specifically designed to withstand clas-
sical cryptanalysis techniques such as differential cryptanalysis
[5] and linear cryptanalysis [6] which can exploit extremely
small statistical characteristics in a cipher’s inputs and outputs.
However, it is important to note that the mentioned analysis
primarily focuses on a specific aspect of a system’s architec-
ture: the mathematical structure of an algorithm.

It is crucial to recognize that even if a correct implementa-
tion incorporates robust algorithms and protocols, it does not
guarantee complete security. Vulnerabilities can still emerge
from other layers of the implementation [1]. In addition to
the cryptographic algorithms themselves, other factors such
as defective computations [7], [8] timing information [9] and
invasive measuring techniques [10] can be used to reveal the
secrets of the cryptosystem.

Side channel attacks have been successfully executed
against a wide array of devices, encompassing implementa-
tions in ASICs, FPGAs and software-based systems [1]. These
attacks have targeted a broad spectrum of targets, ranging from
small single-purpose chips to intricate devices characterised
by noisy power measurements and intricate parallel operations

that obscure the underlying power consumption patterns. The
versatility of side channel attacks highlights their potential
applicability across diverse hardware and software platforms,
therefore taking countermeasures against these attacks is a
vital part of cryptographic systems.

The power consumption of an integrated circuit or a larger
device is a reflection of the combined activity of its individual
elements, as well as the electrical properties, such as capac-
itance, of the overall system [1]. This means that different
operations within the circuit can consume varying amounts of
power. For instance, a microprocessor might employ different
circuits for performing additional operations compared to
register loads, resulting in differing power consumption for
these operations. Furthermore, the net power consumption is
influenced by the specific transistors that are switching within
the active circuits at any given time. The dynamic nature
of power consumption highlights the complexity involved in
analysing side channels and extracting meaningful information
from them. Similar to this , it can be gathered that power
consumption differs based on the data as well. This is the
data-dependent power consumption.

B. CPA Attacks Based On Hamming Distance Model

In the realm of side channel attacks, several methods exist
for revealing secrets. Two prominent techniques are Differen-
tial Power Analysis (DPA) [1] and leveraging the correlation
factor between power consumption and the Hamming Weight
of the data [11], [12]. However, this paper places specific
emphasis on the application of the Hamming Distance and the
leakage model. The utilisation of the Hamming Distance, as
well as the leakage model, was initially introduced in a paper
authored by Eric Brier, Christophe Clavier, and Francis Olivier
[2]. This approach incorporates the use of CPA to identify
the parameters of the leakage model. By employing CPA,
the paper aims to further investigate the significance of the
Hamming Distance and explore its effectiveness in extracting
sensitive information.

Indeed, the Hamming Distance and Hamming Weight are
closely related concepts in the context of binary sequences
or strings. The Hamming Distance refers to the number of
bit positions that differ or ”flip” when transitioning from one
state to another. It measures the dissimilarity or the number of
changes required to transform one string into another. On the
other hand, the Hamming Weight represents the count of ’1’
bits or the number of ’1’s present in the current state. For an
example, consider the byte ’00110011’. Here, the Hamming
Weight is 4 since there are 4 ’1’s in it.

There is a relationship between the Hamming Distance and
the Hamming Weight. If we consider the current state as an
all-zero string, transitioning to the next state implies that the
’1’ bits are the positions where the bits have flipped. Therefore,
the Hamming Weight in this case would precisely correspond
to the number of bits that have changed or flipped, which is
the same as the Hamming Distance.

In essence, the Hamming Distance can be seen as a gen-
eralisation of the Hamming Weight, as it takes into account



both the bits that have changed (’1’ bits) and those that have
remained the same (’0’ bits) when transitioning from one state
to another.

Fig. 1. Power Consumption When bits fipping.

As shown in Figure 1, Power consumption tends to increase
when bits in transistors transition from ’0’ to ’1’ or ’1’ to
’0’. These transitions involve the charging or discharging of
capacitances, resulting in higher power consumption compared
to when the bits remain unchanged [2].

By monitoring power measurements during cryptographic
operations, it becomes possible to infer the transitions occur-
ring within the device and deduce the Hamming Distance. The
power variations observed during these transitions can be used
as a side channel to extract information about the underlying
data and potentially reveal secret keys.

Additionally, previous research papers have made certain
assumptions and observations that support a linear relationship
between the Hamming Distance and power consumption.
These assumptions provide a foundation for understanding and
analysing the leakage of information through power measure-
ments [4]. The linear relationship assumption allows for the
estimation of the Hamming Distance based on power mea-
surements, facilitating the extraction of sensitive information
using side channel analysis techniques [2], [3].

The correlation factor [2] is a crucial element when com-
paring the Hamming Distance with power consumption in
side channel analysis. The correlation factor measures the
strength and direction of the linear relationship between power
consumption and the Hamming Distance. In the upcoming
sections of the paper, a more detailed explanation of the
correlation factor [2] and its significance in analysing the
relationship between power consumption and the Hamming
Distance will be provided. This exploration will shed light
on how the correlation factor can be utilised to quantify the
degree of linear correlation and its implications for extracting
sensitive information from side channels. Correlation factor
can be accurately estimated using the Pearson correlation
coefficient, given by the following formula:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

C. Ciphers which are found vulnerable against CPA

Cryptographic algorithms serve as essential tools for safe-
guarding information and shielding it against unauthorized
access and tampering. These algorithms employ intricate
mathematical functions and operations to convert data into
encrypted form, making it incomprehensible to anyone lack-
ing the appropriate decryption key. They find application in
diverse domains such as secure communication protocols, data
storage, digital signatures, and authentication mechanisms.
By delivering robust encryption and decryption capabilities,
cryptographic algorithms ensure the confidentiality, integrity,
and authenticity of sensitive information. However, certain
popular cryptographic algorithms have been susceptible to side
channel attacks employing the Correlation Power Analysis
(CPA) technique. Notably, public key cryptographic algorithms
like ECC, RSA, and private key cryptographic algorithms like
AES have exhibited vulnerabilities against CPA attacks.

Power analysis techniques, while unable to directly deter-
mine secret keys, can provide valuable insights. Even though
the secret key holds significant importance in most crypto-
graphic algorithms, concealing the cryptographic algorithms
used within a cryptographic system can enhance security.
Kocher et al. [17] demonstrated how power analysis can gather
useful information when the underlying architecture of the
cryptographic system is unknown. In many proposed attacks,
specific operations within cryptographic processes are targeted
to execute CPA attacks. Owen et al. [18] focused on the
substitution box operation of the AES-128 algorithm to launch
a CPA attack and demonstrated the superior performance of
this approach compared to the Differential Power Analysis
(DPA) method. Despite the DPA method successfully identify-
ing the correct key guess, the CPA approach provided a clearer
visualization of the peak, unlike the noisy result obtained
through DPA (This is called the Ghost Peak problem of DPA).

Researchers in [13] have investigated existing side chan-
nel attacks against commonly used cryptographic algorithms,
namely AES, ECC, and RSA. They also explored counter-
measures to mitigate these attacks. Surprisingly, all three
algorithms, widely considered secure, were found vulnerable
to CPA and DPA attacks. No single countermeasure proved
effective in preventing these attacks. Instead, a combination
of several countermeasure techniques is necessary to ensure
the security of a cryptographic system against side channel
attacks. Thus, it is essential to examine vulnerabilities against
CPA attacks in other ciphers employed across various domains
where information confidentiality is of utmost importance.
Finding those vulnerabilities will be helpful for proposing
countermeasures against those attacks [3].

According to Tawalbeh et al. [13], their comprehensive
review on countermeasures for ciphers against side channel
attacks highlighted a significant number of proposed counter-
measures. One such technique is Noise Injection [23], which
aims to prevent attackers from extracting useful information by
analyzing the power consumption of a cryptographic device.
This method involves injecting random noise during crypto-



Fig. 2. Overview of FPGA-based Power Side Channel Exploits

graphic operations to disrupt the leakage of side channel infor-
mation. Another existing method is Instruction Injection [24],
which distorts side channel leakage by randomly injecting a
number of instructions at various points in the cryptographic
algorithm. These injected instructions do not affect the flow
or results of the cipher. It is important to note that most of
the existing countermeasures have been proposed for ciphers
such as AES, ECC, and RSA

D. On-chip Sensors for Power Analysis

One of the key types of on-chip sensors is the voltage sensor,
which monitors voltage levels at various points on the chip,
allowing for the detection of potential voltage-related issues
that can impact power consumption and circuit performance.

Additionally, there have been advancements in the devel-
opment of internal sensors utilizing FPGA primitives. These
sensors facilitate the extraction and transmission of internally-
measured side channel leakages. Specifically, calibrated delay
sensors that are distributed throughout the system are em-
ployed to indirectly gauge voltage fluctuations resulting from
power consumption [4].

Over the past few years, FPGAs have gained significant pop-
ularity in cloud data centers and System-on-Chip applications
for hardware acceleration [14]. While logical isolation is typ-
ically implemented to safeguard each tenant, the use of multi-
user FPGA environments raises important concerns regarding
potential security threats. Recently, a series of research papers
have demonstrated that a malicious user, utilizing their rented
logic, could potentially launch remote Side Channel Attacks
on other users’ assets within the fabric or neighboring chips
[14].

Unlike traditional hardware attacks, software-induced hard-
ware attacks do not require physical access or specialized
equipment like probes and oscilloscopes. These attacks lever-
age the resources provided by the targeted devices and can be
executed from any location and at any time through a network
connection. To estimate the voltage fluctuation within the
fabric, various techniques can be employed, such as designing
Propagation Delay Sensors like RO based sensors or on-chip
sensors utilizing TDC.

The utilization of FPGA-based power analysis intensifies
the risk posed by Side Channel Attacks, eliminating the need
for direct physical access to the target system or specialized
equipment. Past instances of FPGA-based Side Channel At-
tacks have been executed across three distinct scenarios [14]
(Refer the Figure 2 for an overview of the scenarios):

• Intra-FPGA Attack: In the adversary model, multiple
users share an FPGA fabric, with each user being individ-
ually protected from the others through logical isolation.
To monitor voltage fluctuations caused by neighboring
computations, a malicious user has the ability to incor-
porate voltage sensors into their rented logic.

• Inter-Chip Attack: Through the Power Distribution Net-
work (PDN), an untrusted chip embedded within a PCB
has the capability to detect voltage fluctuations caused
by other chips. In this particular exploit, an adversarial
FPGA fabric can execute a CPA attack on an AES module
and an SPA attack on an RSA module, both of which are
operating on a separate FPGA fabric.

• Heterogeneous Chip Attack: In certain technological
advancements, a System-on-Chip (SoC) combines a pro-
cessor and an FPGA fabric. Within this configuration,
malevolent on-chip sensors are incorporated into the
FPGA fabric with the intention of executing a Side
Channel Power Analysis (SPA) on the program operating
within the CPU core.

Reconfigurable logic mechanisms exist to facilitate the
monitoring of voltage variations or fluctuations within FPGAs,
spanning from their source to the point of measurement. These
fluctuations in the power supply within a chip are primarily
caused by the switching activity of its transistors.

Fig. 3. Functional Schematic of TDC Sensor.



Fig. 4. Functional Schematic RO Sensor.

Accurate estimation of the internal power supply voltage
of a chip can be achieved by measuring the propagation
delays of logic gates. Two commonly employed sensors for
power monitoring are the RO-based sensor (based on Ring
Oscillators) and the TDC-based sensor (based on Time-to-
Digital Converters) [14].

• Time-To-Digital Converter: This transforms timing vari-
ances caused by power supply fluctuations into digital
data, offering a cost-effective design with a high level of
precision. Figure 3 shows the functional schematic of the
TDC Sensor.

• Ring Oscillator based Sensor: By measuring the os-
cillation frequency of its Ring Oscillator (RO), this
effectively monitors variations in propagation delay. A
Ring Oscillator is a configuration consisting of an odd
number of inverters connected in series. Figure 4 shows
the functional schematic of the RO Sensor.

E. Machine Learning on Side Channel Attacks

Machine learning techniques are commonly employed to
extract useful information and identify patterns from a given
dataset. In addition to the statistical analysis techniques typ-
ically used in side channel attacks, researchers have also
explored the application of machine learning techniques in this
context. One of the strategies utilized in side channel attacks is
the divide-and-conquer strategy, which involves breaking down
the key recovery problem into several subproblems. Each of
these subproblems can be treated as a classification problem,
aiming to classify a given power trace based on possible
subkeys. In their work, the authors of [19] demonstrated the
use of the Least Square Support Vector Machines (LS-SVMs)
[20] learning algorithm to conduct a side channel attack
on the AES cipher without employing any countermeasures.
However, their results indicate that the LS-SVM classifier and
the traditional statistical method they used for comparison
yield somewhat similar outcomes.

In recent years, profiled side channel attacks, such as Tem-
plate attacks, have gained popularity. However, due to their re-
liance on unrealistic assumptions, novel profiling methods in-
corporating machine learning and deep learning have emerged.
These approaches offer advantages when targeting crypto-
graphic implementations, both unprotected and protected [25].
Machine learning techniques like Support Vector Machine
(SVM) [26] and Random Forest (RF) [27], as well as deep
learning techniques, employ a two-phase approach consisting
of training and attack phases to construct a profiling model.

The deep learning technique proposed in [25] distinguishes
itself from the machine learning approach primarily through
the method employed for data profiling.

The latest progress in deep learning for side channel attacks
has prioritized the development of novel techniques aimed at
enhancing the accuracy and robustness of such attacks. For in-
stance, the authors of [28] proposed several new techniques for
improving the accuracy of deep learning-based side channel
attacks. The lack of correlation between accuracy, commonly
used in machine learning, and established SCA metrics like
Guessing entropy or key-discrimination success rate has been
questioned. The paper establishes that minimizing the Negative
Log Likelihood (NLL) [29] loss function during deep neural
network training is asymptotically equivalent to maximizing
the Perceived Information (PI) [30], which serves as a lower
bound for the Mutual Information between the leakage and
the target secret. This gives more relevant estimations of
the mutual information between a sensitive variable and the
corresponding power trace.
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