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● Lightweight Ciphers : Ciphers designed to run on Resource 
Constrained devices

Lightweight Ciphers → Used in FPGA, IoT, Microcontrollers …
FPGA → Used in Airbus, Electric Vehicles …

● Not tested against Remote Power Analysis attacks before.

● Most work has been carried out on Xilinx FPGA.

● On our project ⇒ Testing the vulnerabilities of Lightweight 
Ciphers on Intel Altera FPGAs.

In our research…
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Recap
● Modern cipher algorithms

→ Highly Mathematically Complex
→ Nearly impossible to break

● Alternative method : Side Channel Attacks (SCA)

● Side Channel Attack uses:
○ Power Consumption
○ Timing Information
○ Electromagnetic Analysis

to extract secret keys from cryptographic systems
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How a Side-Channel Attack is Performed



● Power Analysis : Using power as the side 
channel.

● CPA[2] : Correlation Power Analysis is the main 
method of Power Analysis

● Advisory needs to be present in the premise

● Alternative method
→   RPA[3] : Remote Power Analysis

● Planting an on chip sensor(hardware design) on 
victims system.

Recap (continued…)

RPA : Remote Power Analysis

CPA : Correlation Power Analysis
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Methodology
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Verilog Implementation

Collecting Power Traces

Executing the Attack

Evaluation



Investigating AES Cipher
1. Hardware implementation of AES.

2. Collected traces for a specific key.

3. Target S-box operation of AES.

4. Consider one byte of key at a time.

○ Guess possible keys.

○ Model hypothetical power using Hamming Distance[2] model.

○ Hamming Distance (HD): 1001 0001 → 1110 0001 : 3 (# of bit flips)

5. Calculate the correlation coefficient between hypothetical power and actual power 

consumption.

6. Sort key guesses according to correlation coefficient.
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S-box Operation of AES



SIMON algorithm
● SIMON 32/64

● Has a Feistel structure.

● 64 bit key

○ 4 * 16 bit key blocks

● 32 rounds

○ First 4 round uses 4 key blocks in encryption
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Round Operation of SIMON

Output of the jth bit of the ith round:



Investigating SIMON Cipher
1. Hardware implementation of Simon(Verilog).

2. Collected traces for a specific key.

3. Target second round of the SIMON algorithm

4. Consider five key bits at a time

○ Guess possible keys.

○ Model hypothetical power using Hamming 

Distance model.

5. Calculate the correlation coefficient between 

hypothetical power and actual power consumption.

6. Sort key guesses according to correlation coefficient.
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Hamming Distance Model

An output bit of 2nd Round Operation

An Input bit of 2nd Round Operation



Evaluation of the Attacks
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Success Rate[14] can be used,

→ Execute attack n times using same data

→ Count successful guesses



Experiments and Results
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RPA attack results on AES

● Performed the RPA attack on AES with 128 bit key.

○ Used Intel Cyclone X FPGA to get traces.

● Used CUDA parallel processing to reduce the runtime

● Evaluated outcomes using the success rate.

● Good baseline for attacking lightweight ciphers
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Experimental Setup



RPA attack results on SIMON
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Correlation 
values are same

00 0 0 0 0 0

01 0 0 0 0 1

02 0 0 0 1 0

03 0 0 0 1 1

08 0 1 0 0 0

09 0 1 0 0 1

0A 0 1 0 1 0

0B 0 1 0 1 1

Guessed Bits 1,16 1,15 1,9 1,1  2,1

Expected values 0 1 0 1 1

AND operation of SIMON cipher is 
vulnerable to RPA attack



Evaluate success rates for RPA on AES
● Success rate vs sample size. 

● Sample size > 38,000 ⇒ Success rate = 100%. 

● AES is 100% vulnerable on Intel FPGA.
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Evaluate success rates for RPA on SIMON
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● Success rate vs Sample size. 

● Sample size > 40,000 ⇒ Success rate = 100%. 

● SIMON is 100% vulnerable on Intel FPGA.



Comparison of attacks on AES and SIMON
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AES SIMON

128-bit key 64-bit key

Number of attacking rounds

Target One byte at a time Five bits at a time

Number of key guesses in one 
execution 28 = 256 25 = 32

Total number of executions to 
generate key 256*16 * NOS = 4096 * NOS 32 * 9 * 4 * NOS = 1152 * NOS



Conclusions

● AES and SIMON are vulnerable to 
RPA attacks on Intel FPGAs

● AND operation of SIMON is 
vulnerable to RPA attacks

● When determining remaining 
keyblocks in SIMON, the error of 
the previous guesses accumulates
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Demonstration
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Obtaining Power Traces

RPA Attack on AES

RPA Attack on Simon



● Finding vulnerable points of SIMON to be attacked

○ Two approaches were considered

● Low Power Consumption in SIMON

○ Increase the number of SIMON units

○ After attacking successfully, reduce the number of units

● Having same Correlation values for different guesses

○ Only AND operation is have significant impact on the power 

traces

● Inaccurate power traces for SIMON

○ Changed the values of the TDC delay elements, to identify 

the vulnerable key bits

Problems and Challenges
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Project 
Outcomes

● The first experiment of RPA 
attacks on Intel FPGAs

● The first RPA attack research on 
Lightweight Ciphers

● Manuscript is in progress

● Peradeniya University Research 
Excellence Showcase 2023
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