Investigating On-chip Sensor based RPA Attack Vulnerabilities of Lightweight Cipher Algorithms

Final Year Project

Group 18

Group Members

E/17/027Pubudu BandaraE/17/176Esara SithumalE/17/219Ishara Nawarathna

Supervisors

Dr. Damayanthi Herath	UOP
Dr. Mahanama Wickramasinghe	UOP
Dr. Darshana Jayasinghe	UNSW

Background

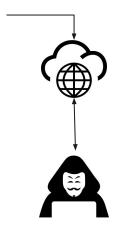
 $Cryptography \rightarrow \textbf{Encrypting} \text{ and } \textbf{Decrypting}$

Used in Smart Card, Wi-Fi, ...

Widely used algorithm : Advanced Encryption Standard (AES)^[1]

To perform a Brute-force Attack on AES -128:

- 10 computers
- 8 billion people
- 1 billion combinations / second
- **50%** possibilities


Introduction

Side-Channel Attack (SCA) is a type of attack that exploits information that is leaked from a Cryptographic Systems.

Data leaking channels:

- Power Consumption (CPA^[2], RPA^[3])
- Timing Information
- Electromagnetic Leaks

Smart Devices \rightarrow IoT devices \rightarrow Lightweight Ciphers

nalysis

Introduction (continued...)

Resource constraints and High reachability of IoT

- → Challenge when minimizing **Side-Channel Attacks**
 - \rightarrow IoT devices have become easy targets

Problem Statement

No concrete studies have been conducted before, about the vulnerabilities of lightweight ciphers against RPA attacks.

Purpose of the Research

To check whether the selected Lightweight Ciphers are vulnerable, and if so how does the leakage compare to AES

Expected Outcomes

Find out vulnerabilities of Lightweight Ciphers; **PRESENT**^[4], **Simon**^[5], **Speck**^[5], on Remote Power Analysis (RPA) Attacks

Compare the data leakage of those Lightweight Ciphers against AES

Impact

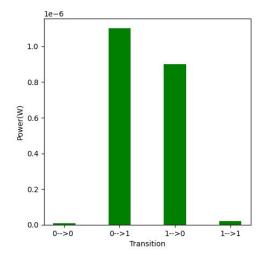
To introduce **Countermeasures** or to **improve the algorithms** of these ciphers, which are running on IoT / Smart devices to be secure against RPA attacks.

Summary of Literature

Power Analysis Attacks

Revealing secret information using power dissipation.

CMOS gates \rightarrow building blocks of ICs. Power dissipation \rightarrow CMOS gate inputs


Hamming Distance (HD)^[2]: 1001 0001 \rightarrow 1110 0001 : 3 (# of bit flips)

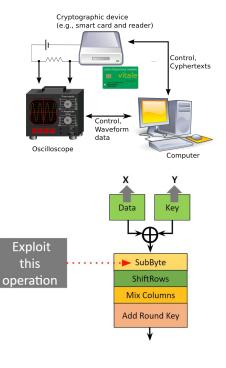
Assumption : Hamming distance correlates to power dissipation.

Hamming Weight (HW)^[6]: 1001 0101 : 4 (# of ones)

HW : Special case of hamming distance(initial state all '0's \rightarrow Hamming Distance = Hamming Weight).

HW,HD : Hypothetical power

Correlation Power Analysis (CPA)^[2] Attacks


Needs : Cryptographic device, Oscilloscope, PC

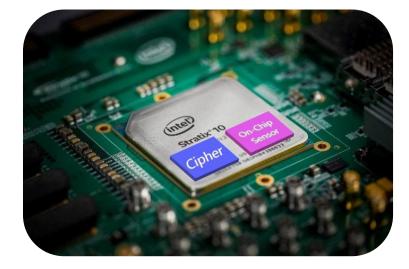
Consider one sub byte of the plain-text of AES & guessed key as 0x00.

	Plaint (P) r =	Actual Power Consumption (μW)					
	3F	$\sqrt{\lambda}$	$\sum_{i=1}^{n} (x_i - $	$(x)^2 \sum_{i=1}^{n}$	$(y_i - y_i)$)2	50
	6E	00 <u>P</u>	earson Correla	a <mark>tign Coeffic</mark>	endo11111	6	34
Fir	nd ⁷ the pe	afson c	correlation f	or ⁵ all 256	keys.	4	32
Ch		 kov wi	th the max		 elation c	 officient	most
			power and				25
						Ť	Ť

Х

Υ

Remote Power Analysis (RPA)^[3] Attacks


RPA, Oscilloscope \rightarrow On chip sensor

On chip Sensors : Physical parameter \rightarrow An electrical signal

Can be used in devices like FPGAs (Field Programmable Gate Arrays) to measure the power consumption.

Example for on chip sensors :

- 1. TDC (Time to Digital Converter) Sensor^[7]
- 2. RO (Ring Oscillator) Sensor^[8]
- 3. VITI (Voltage Induced Time Interval) Sensor^[9]
- 4. PPWM (Power to Pulse Width Modulation) Sensor^[10]

TDC Sensor And RO Sensor

Sensor Types	TDC sensor ^[7]	RO sensor ^[8]
Schematic Diagram	clk TDC Register	en C _{no} C _{no} C _{no} C
Functionality	Timing variances caused by power supply fluctuations \rightarrow digital data	By measuring oscillation frequency of its Ring Oscillator (RO)
Sensitivity	Higher	Lower
Range	Smaller	Larger
Transient voltage drops	Better at detecting	Worse at detecting

Previous work

Previous experiments done against some Lightweight Ciphers

Cipher	Used Platform	Used Method
AES	Arduino Uno, Xilinx Spartan-6	CPA ^[11] , DPA ^[11] , RPA ^[3]
PRESENT	Arduino Uno	CPA : Hamming Weight model ^[12]
Simon	8-bit AVR processor	CPA ^[13]
Speck	8-bit AVR processor	CPA ^[13]

Proposed Methodology

Data Capturing Workflow Executing Attack Results

Methodology

Hardware implementation of PRESENT, Simon and Speck : Verilog

Run on: Altera DE2 Cyclone IV

- \rightarrow Known plaintexts
- \rightarrow Same Key

An On-chip sensor developed inside FPGA: TDC, RO

 \rightarrow Captures waveform for each encryption

Transmit data serially (Ciphertext, Plaintext, Key & Trace)

Methodology

CPA attack with Hamming Distance model

Speck cipher

Modular Subtraction^[13]

PRESENT cipher

S-box operation^[12]

Simon cipher

Bitwise AND operation^[13]

Methodology

Two popular Metrics:

Evaluating Results

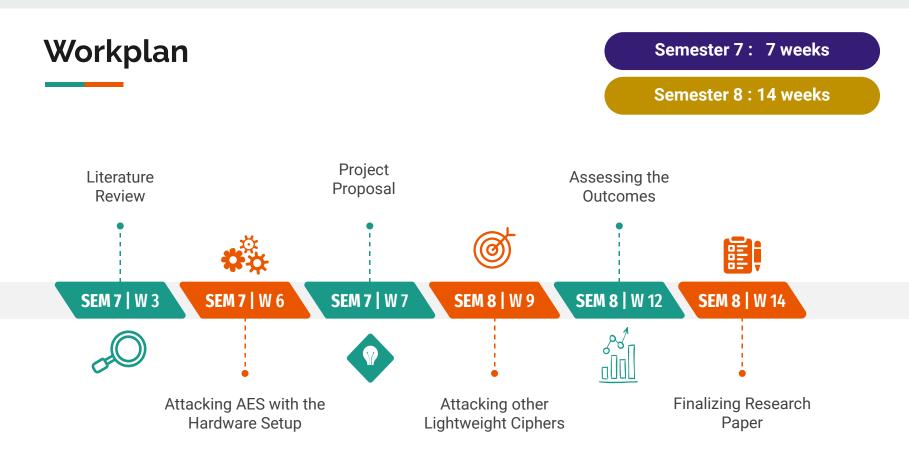
 \rightarrow Guessing Entropy^[14]: How many guesses required to guess the correct key

 \rightarrow Success Rate^[14]: The percentage of successful attacks against a target system

Success Rate can be used,

- \rightarrow Execute attack n times using same data
- \rightarrow Count successful guesses

Success Rate = (Number of Successful Attacks / Total Number of Attacks) * 100


Current work done

Current work done

OrbeseerarbidgPSeaveetTKaegeasisign&Codta

E:\Academics\7th Semester\CO421(FYP)\CPA Attack Cuda Code\CPA-AttackCudaCode\CPA-AttackCudaCode>nvcc -w kernel-TDC.cu helpers.cu -o main-TDC kernel-TDC.cu tmpxft_00004364_00000000-10_kernel-TDC.cudafe1.cpp helpers.cu tmpxft_00004364_00000000-14_helpers.cudafe1.cpp Creating library main-TDC.lib and object main-TDC.exp															
∃:\Acad	emics\7t	h Semest	er\C0421	(FYP)\CP	A Attack	Cuda Co	de\CPA-A	ttackCud	laCode\CP	A-Attack	CudaCode	>main-TD	C.exe wa	veTDC202	22-10-18_11-58-11.data
	ile is d														
	ting 0 0														
calcula 0	ting 0 1 1		3	4	5	6	7	8	9	10	11	12	13	14	15
4a	⊥ d8	52	121 96	4 e2	121 40	2a	171 5b	ea	ן פּן b7	ee	b2	66	b9	42	Ce
0.0327	0.0351	0.0395	0.0386	0.0446	0.0318		0.0324	0.0408	0.0376	0.0351	0.0465	0.0279	0.0366	0.0375	0.0473
05	db	e8	a3	13	95	37	85	c0	fc	22	1f	72	dd	35	eØ
0.0301	0.0266	0.0285	0.0321	0.0299	0.0303	0.0271	0.0267	0.0314	0.0302	0.0288	0.0259	0.0257	0.0295	0.0283	0.0289
8b	4c	c7	da	са	dc	cf	e4	f3	c9	d2	e5	fe	95	7d	df
0.0281	0.0265	0.0282	0.0303	0.0251	0.0292	0.0266	0.0261	0.0291	0.0296	0.0283	0.0250	0.0252	0.0276	0.0278	0.0283
70	9b	f5	b8	e8	e3	6c	8b	8d	9d	55	98	00	72	89	f6
9.0277	0.0264	0.0259	0.0258	0.0249	0.0289	0.0264	0.0259	0.0267	0.0255	0.0270	0.0250	0.0250	0.0259	0.0270	0.0268
a2	ba	8c	55	dd	89	8a	d4	a2	Зb	ec	84	a7	c5	23	bb
0.0276	0.0263	0.0253	0.0258	0.0245	0.0279	0.0261	0.0257	0.0264	0.0249	0.0262	0.0249	0.0241	0.0253	0.0254	0.0249

References

- 1. Daemen, Joan, and Vincent Rijmen, "AES proposal: Rijndael", 1999.
- 2. Brier, E., Clavier, C., Olivier, F., "Correlation power analysis with a leakage model", Cryptographic Hardware and Embedded Systems–CHES, Lecture Notes in Computer Science, vol. 3156, Springer, Berlin, 2004.
- 3. F. Schellenberg, D. R. E. Gnad, A. Moradi and M. B. Tahoori, "An inside job: Remote power analysis attacks on FPGAs", Proc. Design Autom. Test Eur. Conf. Exhibit. (DATE), pp. 1111-1116, Mar. 2018.
- 4. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw, et al., "PRESENT: An Ultra-lightweight Block Cipher" in Cryptographic Hardware and Embedded Systems, Berling, Germany:Springer, 2007.
- 5. Beaulieu R, Shors D, Smith J, Treatman-Clark S, Weeks B, Wingers L., "The SIMON and SPECK families of lightweight block ciphers", cryptology eprint archive, 2013.
- 6. P. Kocher, J. Jaffe, B. Jun and P. Rohatgi, "Introduction to differential power analysis", J. Cryptograph. Eng., vol. 1, no. 1, 2011.

References

- 7. Kenneth M. Zick, Meeta Srivastav, Wei Zhang, Matthew French, "Sensing nanosecond-scale voltage attacks and natural transients in FPGAs", Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays, 2013.
- 8. Kenneth M. Zick, John P. Hayes, "Low-cost sensing with ring oscillator arrays for healthier reconfigurable systems", ACM Transactions on Reconfigurable Technology and Systems, 5(1):1–26, 2012.
- 9. Udugama, Brian, Darshana Jayasinghe, Hassaan Saadat, Aleksandar Ignjatovic, and Sri Parameswaran, "VITI: A tiny self-calibrating sensor for power-variation measurement in FPGAs." IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022.
- 10. Udugama B, Jayasinghe D, Saadat H, Ignjatovic A, Parameswaran S, "A power to pulse width modulation sensor for remote power analysis attacks", IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022.
- 11. Lo, Owen, William J. Buchanan, and Douglas Carson. "Power analysis attacks on the AES-128 S-box using differential power analysis (DPA) and correlation power analysis (CPA)." Journal of Cyber Security Technology 1.2, 2017.

References

- 12. Lo, Owen, William J. Buchanan, and Douglas Carson, "Correlation power analysis on the PRESENT block cipher on an embedded device" Proceedings of the 13th International Conference on Availability, Reliability and Security, 2018.
- 13. Biryukov, A., Dinu, D., Großschadl, J., "Correlation power analysis of lightweight block ciphers: from theory to practice", ACNS 2016. LNCS, vol. 9696, Springer, Heidelberg, 2016.
- 14. Standaert, François-Xavier, Tal G. Malkin, and Moti Yung. "A unified framework for the analysis of side-channel key recovery attacks.", Advances in Cryptology-EUROCRYPT 2009: 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, 2009.