
Large Language Models in Education
Rupasinghe T. T. V. N.

Dept. of Computer Engineering
University of Peradeniya
Peradeniya, Sri Lanka.
e17297@eng.pdn.ac.lk

Kalpana M. W. V.
Dept. of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka.
e17148@eng.pdn.ac.lk

Manohora H. T.
Dept. of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka.
e17206@eng.pdn.ac.lk

Dr. Damayanthi Herath
Dept. of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka.

damayanthiherath@eng.pdn.ac.lk

Prof. Roshan G. Ragel
Dept. of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka.
roshanr@eng.pdn.ac.lk

Dr. Isuru Nawinne
Dept. of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka.

isurunawinne@eng.pdn.ac.lk

Dr. Shamane Siriwardhana
Dept. of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka.

gshasiri@gmail.com

Abstract—As artificial intelligence (AI) rapidly advances, par-
ticularly in generative AI models and large language models
(LLMs), the educational landscape stands on the brink of trans-
formation. Generative AI models, driven by extensive training,
exhibit exceptional abilities in creating human-like content across
various modalities. Large language models, specifically designed
for understanding and generating human-like language, present
unprecedented opportunities in education. Intelligent tutoring
systems, chatbots, virtual assistants, and content generation plat-
forms are integrating LLMs to revolutionize learning experiences,
automate grading, and produce tailored educational content.
Despite their promise, challenges such as inappropriate responses,
privacy concerns, and high costs need addressing. In order to
lessen the high-cost connected with LLM platforms, this paper
presents a novel solution: cost effective intelligent tutor. By
implementing a cache system and local context for a specific
course, computer architecture, this prototype showcases the
potential for widespread application across diverse educational
modules, paving the way for more accessible, personalized, and
efficient learning environments. Furthermore, the solution has
demonstrated a remarkable 70% reduction in cost compared to
the current systems, making it a cost-effective intelligent tutor
for enhanced learning experiences.

I. INTRODUCTION

As the rapidly developing discipline of computer science,
artificial intelligence seeks to develop intelligent agents that
can carry out tasks that generally require human intelligence
[1], [2]. With that purpose, artificial intelligence has advanced
significantly in the last few years, particularly in generative
AI and large language models [3], [4]. These cutting-edge
models have proven to be exceptionally capable of reading,
writing, and producing content that is human-like, opening
up new horizons in creativity and invention [5], [6], [14].
The purpose of generative AI models is to produce fresh,
unique data using the knowledge and patterns acquired during
training. These models can generate new instances of text,

images, and other content not included in the training set.
Large language models specifically refer to models focused
on understanding and generating human-like language, often
achieved through extensive pre-training on large datasets [9],
[10].

These AI models provide educational prospects where tech-
nology integration is becoming more common. The most
common system of LLMs in the educational field is the
Intelligent tutoring system [7], [8]. This has been sought
after in education for a long time to improve and customize
students’ learning experiences with tailored support, auto-
mated grading, and even generating educational content [15].
The effectiveness of generative AI paired with the current
trends in educational technology use offers a potent syn-
ergy that has the potential to completely change the educa-
tional environment. Chatbots and virtual assistants, content
generation platforms, code generation platforms, translation
services etc., are the current platforms that use the LLMs
in the educational field [16]. Chatbots and virtual assistants,
equipped with Large Language Models (LLMs), enhance user
interactions on educational platforms, answering queries and
facilitating a more natural conversation. Content generation
platforms leverage LLMs to assist users in creating high-
quality educational content, while code generation platforms
streamline programming tasks by generating code snippets
based on natural language descriptions. In language education,
translation services employing LLMs contribute to breaking
down language barriers making educational content accessible
to a global audience [17], [19]. Integrating LLMs across these
platforms reflects a transformative shift in the educational
landscape, fostering efficiency, personalization, and improved
accessibility for learners and educators alike.

However, the large language models address many chal-

lenges [11], [12], [23] in these educational platforms [10],
[18]. Some challenges include inappropriate responses, privacy
concerns, high costs, and continuous improvement. A signif-
icant concern identified is the high cost of accessing Large
Language Model APIs [13]. The price structure of LLM APIs
is based on the usage volume measured in terms of API calls
or tokens processed [13], [23], [36]. The more API calls or
tokens used, the higher the associated cost. When there are
millions of API calls given by multiple users, the resulting cost
can be notably high [21], [22]. That is why it is called a major
issue in LLM platforms. To address this challenge, a solution:
cost effective intelligent tutor has been developed in our work.
The proposed cost-effective intelligent tutor is a prototype that
relies on a cache implementation with local context to achieve
cost reduction. The methodology is implemented for computer
architecture course and this prototype can be adopted for other
courses.

II. LITERATURE

There is a rapidly growing number of LLMs that users
can query for a fee. We reviewed the cost associated with
querying popular LLM APIs like GPT-4, ChatGPT, and J1-
Jumbo [28] and found that these models have heterogeneous
pricing structures, with fees that can digger by two orders of
magnitude. Notably, the cost of utilizing LLMs for processing
extensive collections of queries and text emerges as a potential
financial concern. In response, three distinct strategies are
analyzed that users can apply to mitigate the inference cost
linked to utilising LLMs [13].

• Cost Reduction Methods
1) Prompt adaptation

a) Prompt Selection
b) Query Concatenation

2) LLM approximation
a) Completion cache
b) Model fine-tuning

3) LLM cascade
• Cost Measurement when accessing LLM APIs

A. Prompt Adaptation

Fig. 1: Prompt Selection

In exploring ways to make LLM APIs more cost-effective,
one approach is adapting the size of the prompt. Fig 1 shows
the data flow diagram of the prompt adaptation. The cost of
a query to an LLM increases as the prompt size grows. So, a
logical strategy is prompt adaptation, aiming to decrease the
prompt size. Prompt selection is a practical example of this

Fig. 2: Query Concatenation

adaptation, where instead of having a prompt with many task-
performing examples, we keep a smaller subset. This results
in a more compact prompt and, consequently, a lower cost.

Another approach is query concatenation, which involves
sending the prompt only once to the LLM API while having
it address multiple queries. Fig. 2 shows the data flow diagram
of query concatenation. This eliminates redundant prompt
processing and involves combining several queries into one,
explicitly instructing the LLM API to handle multiple queries
in a single prompt. For instance, a prompt could include two
queries and their respective answers, effectively managing both
with a single prompt submission.

B. LLM Approximation

Fig. 3: Completion Cache

In making the use of expensive LLM APIs more budget-
friendly, the idea of LLM approximation [13] comes into play.
An example is the completion cache, which involves storing
responses locally in a cache when sending a query to an LLM
API. When a new query comes in, we first see if it has already
been addressed in a similar manner. If so, we use the LLM
API to get the response; if not, we get it from the cache. This
completion cache is particularly cost-effective when dealing
with frequent similar queries. For instance, in a search engine
using an LLM API, if many users search for the same or
similar keywords simultaneously, the completion cache allows
us to answer all their queries by invoking the LLM only once
[13].

Fig. 4: Model fine-tuning

Fig. 4 shows another method for LLM approximation. It is
called model fine-tuning, where we collect responses from an
expensive LLM API, use them to fine-tune a smaller and more
affordable AI model, and then employ this fine-tuned model
for new queries. Besides cost savings, the fine-tuned model
often brings latency improvements as a bonus, as it doesn’t
require lengthy prompts [13].

C. LLM Cascade

Fig. 5: LLM Cascade

Fig. 5 shows data flow diagram of LLM cascade approach.
There’s an intriguing avenue for data-adaptive LLM selection.
Different LLM APIs have distinct strengths and weaknesses
for handling various queries. Thus, choosing the right LLMs
based on queries’ specific nature can offer cost reduction
and performance enhancements. The concept of LLM cascade
involves sequentially sending a query to a list of LLM APIs.
If the response from the first API is deemed reliable, it is
returned, and there’s no need to consult the subsequent APIs
on the list. The remaining LLM APIs are only queried if the
responses from the previous ones are considered unreliable.
This approach significantly reduces query costs, especially
when the initial APIs are relatively inexpensive and generate
reliable responses. The two essential components of an LLM
cascade are a generation scoring function and an LLM router,
which is a model that learns the correctness of a generation
based on the query and the generated answer. Learning the
selected list and the threshold vectors involves modelling it as
a constraint optimization problem [13].

In seeking ways to improve performance, one exciting
approach is the joint selection of prompts and LLMs. This
involves finding the smallest prompt and the most budget-
friendly LLM that achieves satisfactory task performance for a
given query. Another strategy involves exploring both existing
LLM APIs and fine-tuned models. It’s worth noting that com-
bining different approaches does increase the computational
costs for training. This opens the door to exploring trade-offs
between query costs, task performance, and the computational
resources required. It is a crucial consideration in optimizing
the overall efficiency of these approaches [13].

D. Cost Measurement when accessing LLM APIs

We picked 12 Large Language Model (LLM) APIs offered
by five major providers: OpenAI, AI21, CoHere, Textsynth,
and ForeFrontAI. The details are in the table below, and
the cost information was collected in March 2023. There are
three components to the cost of utilizing these APIs. These
are a fixed cost per request, input, which is correlated with
the quantity of input tokens, and output, which is correlated
with the quantity of generated tokens. Interestingly, there can
be up to two orders of magnitude disparity in the costs of
these LLMs. For instance, to process 10 million input tokens,
GPT-J from Textsynth costs only $0.2, while OpenAI’s GPT-
4 requires $30. This illustrates the substantial cost variations
among different LLMs, even for similar tasks [13]. Table I
shows the summary of commercial LLM APIs.

API Size/B 10M
input
tokens
(USD)

10M
output
tokens
(USD)

request
(USD)

GPT-Curie 6.7 2 2 0
ChatGPT NA 2 2 0
GPT-3 175 20 20 0
GPT-4 NA 30 60 0
J1-Large 7.5 0 30 0.0003
J1-Grande 17 0 80 0.0008
J1-Jumbo 178 0 250 0.005
Xlarge 52 10 10 0
QA 16 5.8 5.8 0
GPT-J 6 0.2 5 0
FAIRSEQ 13 0.6 15 0
GPT-Neox 20 1.4 35 0

TABLE I: Summary of commercial LLM APIs

E. FrugalGPT reduces Cost and Improves accuracy

FrugalGPT, a practical implementation of LLM cascade,
stands out as a straightforward and adaptable approach. It
learns the most effective combinations of LLMs for different
queries, aiming to minimize costs while enhancing accuracy.
In experiments, FrugalGPT demonstrated the ability to match
the performance of the top individual LLM, such as GPT-4,
but with a remarkable up to 98% reduction in costs [13].

FrugalGPT has selected 12 LLM APIs, and it has been
developed on top of these APIs and evaluated on a range of
datasets belonging to different tasks. A summary of datasets
used in FrugalGPT LLM cascade experiments is given in Table
II. Fig. 6 shows the FrugalGPT strategy.

Dataset Domain Size No. of Examples
in the prompt

HEADLINES Finance 10000 8
OVERRULING Law 2400 5
COQA Passage Reading 7982 2

TABLE II: Summary of datasets used in the FrugalGPT LLM
cascade experiments.

Fig. 6: FrugalGPT Strategy

Approach Accuracy Cost($)
GPT-4 0.857 33.1
FrugalGPT 0.872 6.5

TABLE III: Overall performance and cost

Using a cascade strategy learned from the dataset with an
overall budget of $6.5, which is one-fifth of GPT-4’s cost,
FrugalGPT demonstrates a smart approach. It avoids querying
GPT-4 if it gets high-quality answers from GPT-J and J1-L.
Even when GPT-4 makes an occasional mistake, FrugalGPT
learns to rely on the correct answers from J-1 and GPT-
J. In summary, FrugalGPT impressively cuts costs by 80%

while enhancing accuracy by 1.5% compared to GPT-4. This
showcases the potential of FrugalGPT as a cost-effective and
accurate alternative in the context of LLMs [13]. Overall
performance and cost of FrugalGPT compared to GPT-4 LLM
API is given in Table III.

F. Techniques of Checking similarity

1) Cosine Similarity: Cosine similarity is a way to figure
out how alike two vectors are [29]. It focuses on the direction
or angle of the vectors, not their size. For this to work, both
vectors should be from the same inner product space, meaning
they can give a single number when multiplied together [25].
The similarity between the vectors is determined by looking at
the cosine of the angle between them. This helps us understand
how much they point in the same direction, regardless of how
long or short they are [27]. Mathematically, the product of two
vectors’ lengths divided by their dot product can be defined as
the cosine similarity. Formula (1) is used to find the similarity
between two vectors called A and B.

Similarity(A,B) = cos(θ) =
A.B

||A|| ||B||
(1)

Cosine similarity yields values within the range of -1 to +1,
with greater values indicating a higher degree of similarity.
This calculation involves the dot product of the vectors divided
by the product of their magnitudes. In practical terms:

• When two vectors share the same orientation, resulting
in a 0-degree angle, the cosine similarity is 1.

• Perpendicular vectors, forming a 90-degree angle, yield
a cosine similarity of 0.

• Vectors pointing in opposite directions, creating a 180-
degree angle, have a cosine similarity of -1.

2) Jaccard Similarity: Jaccard Similarity serves as a mea-
sure to gauge how similar two sets are [30], [31]. Whether it’s
comparing binary vectors or sets of items, this index, denoted
as J, helps determine the degree of resemblance. Ranging from
0 to 1, a value closer to 1 signifies more similarity between
the two sets. Commonly used in Data Science and Machine
Learning applications like Text Mining and Recommendation
Systems, Jaccard Similarity is calculated by considering the
number of shared observations in both sets divided by the
total number in either set. Mathematically, it’s expressed as
the intersection of sets A and B divided by their union.
If two datasets share all the same elements, their Jaccard
Similarity Index is 1, indicating complete similarity; if there
are no common elements, the index is 0. Essentially, Jaccard
Similarity provides insights into how much features overlap
between datasets.

G. Cache Eviction Policies

Cache eviction policies are like decision-making tools for
handling data in a cache, which is a speedy and temporary
storage layer. This cache helps boost performance by holding
onto recently used or frequently accessed data in locations that
are quicker and more efficient to get to than regular memory
spaces. But when the cache reaches its limit, these policies step

in to decide which items should be removed to make space
for new ones. They essentially manage the revolving door of
data in the cache to keep things running smoothly.

1) Least Recently Used (LRU): The item that hasn’t been
used in a while is removed according to the LRU cache
eviction policy. Assuming that the most frequently accessed
items will likely be requested again soon, the idea is to keep
them in the cache. LRU can be implemented using a linked
list. In a linked list, each node represents a cached item. Most
recently used item is the head of the list. An item comes to
the top of the list when it is accessed. An item is taken out of
the tail of the list each time it needs to be removed [32].

2) Least Frequently Used (LFU): The least-used item is
removed from the cache using the LFU eviction policy.
Assuming that the most popular items are more likely to be
requested again soon, the idea is to keep them in the cache.
To implement LFU, each cached item can have a frequency
counter, and the items can be stored in ascending order of
frequency using a priority queue or a hash map of doubly
linked lists. An item’s position in the data structure is updated
and its frequency counter is increased each time it is accessed.
Every time an item needs to be removed, it is removed from
the group with the lowest frequency [32].

LFU stands out as a more sophisticated cache eviction
policy compared to LRU, offering solutions to some of LRU’s
challenges. It’s adept at preventing cache pollution by prior-
itizing the removal of items accessed infrequently, regardless
of when they were last used. LFU also excels in handling
cyclic access patterns, favoring items accessed more often than
their counterparts. However, these advantages come with trade-
offs. Maintaining LFU can be costlier than LRU, especially if
frequent updates to frequency counters and data structures are
required. Additionally, LFU may suffer from aging, favoring
older items with high frequencies even if they’ve become
irrelevant. It may also struggle in applications with changing
access patterns, as items popular in the past may not align
with current or future trends. In essence, LFU offers a refined
approach to cache management, addressing certain limitations
while introducing considerations for effective implementation
[33].

3) First In First Out (FIFO): FIFO serves as a straight-
forward cache eviction policy, prioritizing the removal of the
item that entered the cache earliest. This policy operates on
the premise that retaining the most recently added items in the
cache enhances the likelihood of their imminent reuse. FIFO
is implemented by using a queue data structure. The oldest
item is at the front of the queue and that node represents a
cached item. The back of the line is where new items are
queued, because of the fact that they are cached. The item at
the front of the queue, which represents the earliest addition to
the cache, is dequeued when the cache fills up and an eviction
is required. FIFO provides a simple and intuitive approach to
cache management, aligning with the assumption that recently
added items are more prone to future access [34].

4) Time To Live (TTL): TTL functions as a cache eviction
policy designed to remove items that have exceeded their

predefined duration for staying in the cache. The key concept
is to prioritize the retention of the most current items in the
cache, operating under the assumption that they hold greater
relevance and utility compared to outdated counterparts. The
implementation of TTL involves assigning a timestamp to
each cached item, alongside a priority queue or a hashmap of
doubly linked lists to organize items based on their expiration
times. Upon adding an item to the cache, its timestamp is
set to the current time plus the TTL value, indicating the
duration it is allowed to remain in the cache. When eviction
becomes necessary, the item with the earliest expiration time
is removed. TTL offers a dynamic approach to cache man-
agement by ensuring the preservation of timely and pertinent
information while discarding items that have surpassed their
designated lifespan [35].

III. METHODOLOGY

Initially, we collected course materials and curated datasets
to serve as the base for our system. Subsequently, we planned
the data flow within the system and designed a high-level
solution architecture to guide our implementation. Fig. 7
shows the data flow diagram and Fig. 8 shows the High
level solution architecture. The core of our system lies in the
Question Answering (QA) model, where we acquired pre-built
models, trained them using our datasets, and defined a thresh-
old value (0.5) to identify the highest-scored answer. For that,
we selected the most accurate QA model called BERT-base-
cased-squad. To enhance the contextual understanding, we
incorporated a Similarity Checker utilizing a cosine similarity
function, enabling the selection of the most relevant passage
for subsequent QA processing. The Cache Implementation
employed a Least Frequently Used (LFU) Eviction Policy,
replacing least frequently accessed prompts and optimizing
storage efficiency. Backend Implementation involved encoding
prompts using the all-MiniLM-L6-v2 model, interfacing with
the cache, similarity checker, and QA model. Frontend Im-
plementation focused on creating an intuitive chat application
using Angular. The Integration phase harmonized the various
components, including frontend, backend, cache, similarity
checker, and QA model implementations. Finally, extensive
testing was conducted to assess the robustness of the chat
application across a spectrum of prompts.

Fig. 7: Data flow diagram.

The user initiates the process by submitting a prompt with
its designated category, representing a question directed to our
system. We employed an all-MiniLM-L6-v2 encoder sourced
from the Hugging Face Sentence Transformer to encode the
prompt into a vector. The encoded vector is then forwarded
to the cache, where we determine if similar questions have
been previously posed to our system. In the event of a
cache hit, the relevant response is retrieved from the cache,
and the cache’s access count is updated. We employ cosine
similarity for instances without a cache hit to identify the most
suitable passage among summaries generated from the original
learning materials. This selected passage is retrieved from the
file storage. In its non-encoded form, the original question
and the passage are then provided to the question-answering
model, specifically BERT-base-uncased-squad2, known for its
lightweight yet effective performance. The model identifies
the position of the answer in the passage and assigns a score
representing the probability of correctness. Setting a threshold
value 0.5, determined through trial and error, guides decision-
making. If the score surpasses the threshold, the cache is
updated with the response from the question-answering model,
and the user is served the response. Conversely, external Large
Language Model (LLM) APIs are called if the score is below
the threshold. In our system, we created a mock service
for these APIs rather than invoking external APIs, ensuring
efficient and controlled testing procedures.

Fig. 8: High Level Solution Architecture diagram.

In crafting the high-level solution architecture for our
system, we designed a user interface through an Angular
framework, shaping a chat application to facilitate seamless
interactions. The backend of our system is built on Flask, a
micro web framework, serving as the central hub for managing
cache operations and orchestrating Large Language Model
(LLM) requests. The backend plays a dual role, directly
communicating with LLM APIs for external queries and
establishing a unidirectional link with the file storage system.
This connection enables the retrieval of pertinent passages
required for generating accurate responses. This architectural
arrangement ensures a well-structured and efficient system,
providing a user-friendly interface while handling the intricate
caching processes, LLM interactions, and data retrieval.

IV. EXPERIMENTS

Our research comprised two distinct experiments, each
focusing on different implementations. In the ”Question An-

swering Model” implementation, we applied both prebuilt
question-answering models and custom models tailored specif-
ically to the context of computer architecture. Custom models,
including BERT, Electra-Base, RoBERTa, DistilBERT, Dis-
tilRoBERTa, Electra-Small, and XLNet, enhanced the sys-
tem’s performance in Natural Language Processing (NLP)
tasks. The custom models, including prebuilt and context-
specialized ones, demonstrated notable performance in the
question-answering system. The BERT Base Cased model, in
particular, exhibited the highest accuracy. The highest achieved
was approximately 0.268.

In the Cache Implementation, we explored the effectiveness
of the Least Frequently Used (LFU) eviction policy. Our
analysis involved testing access counts when retrieving similar
questions, ensuring the cache’s responsiveness to repeated
queries. Additionally, we examined the cache’s ability to adapt
to new questions and answers, affirming its dynamic nature by
replacing the least frequently used block.

The cache implementation’s evaluation of the LFU evic-
tion policy highlighted its efficiency in managing storage,
optimizing access counts, and ensuring the adaptability of
the cache to evolving question-response pairs. These results
underscore the robustness of our system in effectively handling
a range of question-answering tasks within the unique domain
of computer architecture. Further analyses and optimizations
can build upon these findings, enhancing the system’s overall
performance and applicability in diverse educational contexts.

• Steps of the demonstration

1) How to send prompts and get responses

Fig. 9: Sending prompts and getting responses

The prompts get the responses from the local context. It
can be seen in the backend terminal.

2) How do the prompts get responses from external API
while it updates the cache. Then after that, prompts will
get the response from the cache again.

3) When a user inserts similar types of questions (same
question but different sentences), It will give the same
response on the cache.

4) How blocks of the cache are getting filled. We have four
blocks in our cache. All of the blocks are getting filled.

Fig. 10: Calling external LLM APIs

Fig. 11: Cache hits of similar questions

5) How the block replacement happens using the LFU
eviction policy. The block is replaced by a new question
with a response. It is replaced with the least frequently
used block in the cache.

V. RESULTS AND DISCUSSION

This section revolves around an in-depth cost analysis,
revealing a substantial 70% reduction achieved through our
implemented system. This reduction is solely based on cost
considerations, excluding accuracy assessments for simplicity.
However, the complexity of cost reduction when accuracy is
factored in is acknowledged, paving the way for future work.
We delve into the cost analysis, highlighting the methodology
employed, the specific percentage reduction achieved, and the
potential implications of incorporating accuracy metrics into
the evaluation framework. This sets the stage for a detailed
exploration of our findings, providing a comprehensive under-
standing of the cost-effectiveness of our system.

A. Results

B. Discussion

In this work, we propose a cost-effective intelligent tutor-
ing system, demonstrated through implementing a prototype
designed to showcase the reduction in costs associated with
external Large Language Model (LLM) API usage. Central to
our approach is integrating a cache system with the question-
answering model, strategically minimizing reliance on external
LLM APIs like GPT-3.5. For the demonstration, we selected

Fig. 12: Cache blocks filling

Fig. 13: Block replacement in cache

the GPT-3.5 Turbo LLM API, recognized for its capabilities
and cost-effectiveness, particularly with a 16K context window
optimized for dialog [37], [38].

Model Input Output
gpt-3.5-turbo-
1106

$0.0010/ 1K to-
kens

$0.0020/ 1K to-
kens

gpt-3.5-turbo-
instruct

$0.0015/ 1K to-
kens

$0.0020/ 1K to-
kens

TABLE IV: Price Structure of GPT 3.5 LLM API

In our cost analysis, GPT-3.5 Turbo’s pricing structure,
based on tokens (roughly 750 words per 1000 tokens), was
considered. Table IV shows the price structure of GPT 3.5. The
API charges $0.0010 per 1000 tokens for input and $0.0020
per 1000 tokens for output. Without our system, utilizing 20
prompts resulted in a total cost of $0.06 for 20 API calls.
However, utilizing the local context for answers, our system
significantly reduced the number of external LLM API calls
to only 6, each incurring a cost of $0.0030 per API call.
Consequently, the total cost for API calls with our system
amounted to $0.018 [37].

This demonstration led to a noteworthy conclusion: our
system achieves a 70% reduction in costs, a metric calculated
as (profit / total cost from GPT-3.5) x 100%. Notably, this
analysis focused solely on cost considerations, paving the way
for an exploration when accuracy is factored in a dimension
that holds complexity and warrants future work. The algo-
rithmic integration of cost and accuracy metrics promises a

Fig. 14: Cost Analysis

comprehensive evaluation framework for further refinement
and optimization of our intelligent tutoring system.

VI. CONCLUSION

In conclusion, the implemented solution addresses the chal-
lenges posed by high costs in utilizing Large Language Models
(LLMs) within educational platforms. The devised prototype,
equipped with a cache, stands out for its adaptability to
integrate seamlessly with various course materials, featuring
a custom-based memory instead of a static one. Through
systematic experimentation, we implemented the efficacy of
our solution in cost reduction by minimizing the reliance on
external LLM APIs. By taking advantage of the finding that
users typically ask the same kinds of queries, our prototype
achieves multiple cache hits, significantly reducing the number
of API calls and, consequently, a noteworthy decrease in
costs. While our solution focused on computer architecture
course materials, the versatility of our prototype allows it
to be effortlessly integrated into any course. The success of
this approach highlights its potential for widespread adoption,
offering a scalable and cost-effective solution for educational
platforms leveraging LLMs.

REFERENCES

[1] M. Wooldridge, ”Intelligent agents,” Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence, vol. 1, pp. 27-73, 1999.

[2] D. L. Poole and A. K. Mackworth, ”Artificial Intelligence: Foundations
of Computational Agents,” Cambridge University Press, 2010.

[3] A. Vaswani et al., ”Attention is All You Need,” in Advances in Neural
Information Processing Systems, vol. 30, 2017.

[4] G. Prato, E. Charlaix, and M. Rezagholizadeh, ”Fully Quantized Trans-
former for Improved Translation,” 2019.

[5] Y. Chang et al., ”A Survey on Evaluation of Large Language Models,”
arXiv preprint arXiv:2307.03109, 2023.

[6] T. H. Kung et al., ”Performance of ChatGPT on USMLE: Potential for
AI-assisted Medical Education Using Large Language Models,” PLoS
Digital Health, vol. 2, no. 2, p. e0000198, 2023.

[7] A. Caines et al., ”On the Application of Large Language Models
for Language Teaching and Assessment Technology,” arXiv preprint
arXiv:2307.08393, 2023.

[8] Y. Liu et al., ”Summary of ChatGPT-Related Research and Perspective
Towards the Future of Large Language Models,” Meta-Radiology, p.
100017, 2023.

[9] X. Q. Dao, ”Performance Comparison of Large Language Models on
Vnhsge English Dataset: OpenAI ChatGPT, Microsoft Bing Chat, and
Google BERT,” arXiv preprint arXiv:2307.02288, 2023.

[10] J. G. Meyer et al., ”ChatGPT and Large Language Models in Academia:
Opportunities and Challenges,” BioData Mining, vol. 16, no. 1, p. 20,
2023.

[11] Y. Zhou et al., ”Large Language Models are Human-Level Prompt
Engineers,” arXiv preprint arXiv:2211.01910, 2022.

[12] K. Greshake et al., ”More than You’ve Asked For: A Comprehensive
Analysis of Novel Prompt Injection Threats to Application-Integrated
Large Language Models,” arXiv preprint arXiv:2302.12173, 2023.

[13] L. Chen, M. Zaharia, and J. Zou, ”FrugalGPT: How to Use Large
Language Models While Reducing Cost and Improving Performance,”
arXiv preprint arXiv:2305.05176, 2023.

[14] A. Bozkurt et al., ”Speculative Futures on ChatGPT and Generative
Artificial Intelligence (AI): A Collective Reflection from the Educational
Landscape,” Asian Journal of Distance Education, vol. 18, no. 1, 2023.

[15] V. Fernoagă et al., ”Intelligent Education Assistant Powered by Chat-
bots,” eLearning & Software for Education, vol. 2, 2018.

[16] A. Przegalińska, ”Collaborative Artificial Intelligence: The Example of
Virtual Assistants and Conversational AI,” Artificial Intelligence (AI) as
a Megatrend Shaping Education, p. 12, 2022.

[17] P. Sridhar et al., ”Harnessing LLMs in Curricular Design: Using
GPT-4 to Support Authoring of Learning Objectives,” arXiv preprint
arXiv:2306.17459, 2023.

[18] S. S. Gill et al., ”Transformative Effects of ChatGPT on Modern
Education: Emerging Era of AI Chatbots,” Internet of Things and Cyber-
Physical Systems, vol. 4, pp. 19-23, 2024.

[19] D. Baidoo-Anu and L. Owusu Ansah, ”Education in the Era of Genera-
tive Artificial Intelligence (AI): Understanding the Potential Benefits of
ChatGPT in Promoting Teaching and Learning,” SSRN 4337484, 2023.

[20] C. H. Chang and G. Kidman, ”The Rise of Generative Artificial
Intelligence (AI) Language Models—Challenges and Opportunities for
Geographical and Environmental Education,” International Research in
Geographical and Environmental Education, vol. 32, no. 2, pp. 85-89,
2023.

[21] H. Yu and Y. Guo, ”Generative Artificial Intelligence Empowers Edu-
cational Reform: Current Status, Issues, and Prospects,” in Frontiers in
Education, vol. 8, p. 1183162, June 2023.

[22] C. Cao, ”Scaffolding CS1 Courses with a Large Language Model-
Powered Intelligent Tutoring System,” in Proceedings of the Interna-
tional Conference on Intelligent User Interfaces (IUI), Mar. 2023, pp.
229-232, doi: 10.1145/3581754.3584111.

[23] E. Kasneci et al., ”ChatGPT for Good? On Opportunities and Challenges
of Large Language Models for Education,” Learning and Individual
Differences, vol. 103, p. 102274, 2023.

[24] O. Levy and Y. Goldberg, ”Dependency-Based Word Embeddings.”
[25] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, ”From Word

Embeddings To Document Distances.”
[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ”BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding,” Oct.
2018. [Online].

[27] C. Aguerrebere, I. Bhati, M. Hildebrand, M. Tepper, and T. Willke,
”Similarity Search in the Blink of an Eye with Compressed Indices,”
Apr. 2023.

[28] D. Narayanan et al., ”Cheaply Evaluating Inference Efficiency Metrics
for Autoregressive Transformer APIs,” arXiv preprint arXiv:2305.02440,
2023.

[29] Xia, P., Zhang, L. and Li, F., 2015. Learning similarity with cosine
similarity ensemble. Information sciences, 307, pp.39-52.

[30] G. I. Ivchenko and S. A. Honov, ”On the Jaccard Similarity Test,”
Journal of Mathematical Sciences, vol. 88, pp. 789-794, 1998.

[31] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, ”Us-
ing of Jaccard Coefficient for Keywords Similarity,” in Proceedings of
the International MultiConference of Engineers and Computer Scientists,
vol. 1, pp. 380-384, March 2013.

[32] D. Lee et al., ”On the Existence of a Spectrum of Policies That Subsumes
the Least Recently Used (LRU) and Least Frequently Used (LFU)
Policies,” in Proceedings of the 1999 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, May
1999, pp.

[33] P. R. Jelenković and A. Radovanović, ”Least-Recently-Used Caching
with Dependent Requests,” Theoretical Computer Science, vol. 326, no.
1-3, pp. 293-327, 2004.

[34] J. Yang, Y. Zhang, Z. Qiu, Y. Yue, and R. Vinayak, ”FIFO Queues
Are All You Need for Cache Eviction,” in Proceedings of the 29th
Symposium on Operating Systems Principles, October 2023, pp. 130-
149.

[35] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, ”Performance
Evaluation of Hierarchical TTL-Based Cache Networks,” Computer
Networks, vol. 65, pp. 212-231, 2014.

[36] M. A. K. Raiaan et al., ”A Review on Large Language Models:
Architectures, Applications, Taxonomies, Open Issues and Challenges,”
2023.

[37] OpenAI Pricing. [Online]. Available: https://openai.com/pricing
[38] L. Spangher et al., ”Officelearn: An OpenAI Gym Environment for

Reinforcement Learning on Occupant-Level Building’s Energy Demand
Response,” in Tackling Climate Change with Artificial Intelligence
Workshop at NeurIPS, 2020.

