

A Spatiotemporal Approach to Tri-Perspective **Representation for 3D Semantic Occupancy Prediction**

Sathira Silva ^{1,2}

Background and Problem Statement

3D Semantic Occupancy Prediction (SOP) aims to predict per-voxel semantic labels for a 3D scene, enabling a dense and structured understanding of the environment for applications like autonomous driving and robotics.

Existing 3D SOP methods focus on spatial fusion while overlooking temporal information, limiting their ability to leverage historical context.

Architecture

Virtual View Transformation (VVT): to view camera features as if they were present in the current time step.

Spatial Cross Attention (SCA): to fuse virtual camera view features onto S2TPV queries for each time step

Temporal Cross-View Hybrid Attention (TCVHA): to fuse the virtual spatial TPV features across all time steps.

Savindu Wannigama¹ Gihan Jayatilaka³ Muhammad Haris Khan² Roshan Ragel¹

¹University of Peradeniya ²Mohamed Bin Zayed University of Artificial Intelligence ³University of Maryland

Visualization

Temporal Cross-View Hybrid Attention

CVHA enables queries to interact with historical features while leveraging multi-view (HW, DH, WD) TPV contexts for time-stepped data, iteratively constructing queries that capture both temporal history and cross-view information, as detailed in Equations (1) and (2).

 $Q'_{k} = \{T^{HW}_{k-1}, T^{HW}_{k}\} \cup \{T^{DH}_{k-1}, T^{DH}_{k}\}$

 Q'_k represents the queries for the k-th iteration of TCVHA, formed by concatenating historical and current features from different views (height-width, depth-height, width-depth). Their union integrates temporal and cross-view information.

 $TCVHA(q'_{k,h,w}) = DeformAttn(q'_{k,h,w})$

For each query $q'_{k,h,w} \in Q'_k$, TCVHA applies deformable attention using crossview reference points Refh, w^{cross} to guide focus, with T'_k providing the feature maps

Contributions

We introduce S2TPVFormer, which features a novel temporal fusion workflow for TPV representation and utilizes CVHA to enhance spatiotemporal information sharing across planes.

S2TPVFormer achieves a +4.1% mIOU improvement over TPVFormer on the nuScenes validation set, showcasing the strong potential of vision-based 3D SOP.

$$\{ \cup \{ T_{k-1}^{WD}, T_k^{WD} \}.$$
 (1)

$$_{h,w}, \operatorname{Ref}_{h,w}^{\operatorname{cross}}, T'_k).$$
 (2)

3D SOP Results on the nuScenes Validation Set

Method	mIoU (%)	barrier	bicycle	sng	car	const. veh.	motorcycle	pedestrian	traffic cone	trailer	truck	drive. surf.	other flat	sidewalk	terrain	manmade	vegetation
TPVFormer †	<u>52.0</u>	<u>59.6</u>	26.3	<u>77.6</u>	<u>74.1</u>	<u>30.9</u>	<u>47.5</u>	41.8	<u>20.2</u>	<u>44.9</u>	<u>67.8</u>	<u>86.3</u>	<u>54.5</u>	<u>55.5</u>	<u>54.6</u>	<u>47.5</u>	<u>44.0</u>
S2TPVFormer (Base) † S2TPVFormer (Small)	56.1 43.4	60.1 54.3	16.5 <u>17.2</u>	85.9 66.0	74.3 69.5	42.2 28.2	51.5 22.8	<u>37.0</u> 32.1	21.2 15.1	49.4 31.7	74.2 59.6	86.4 82.4	56.3 49.9	57.9 47.8	55.0 47.4	65.4 34.9	65.0 36.0

+models using the same parameter configuration, makes it fair to compare the results of these models

LiDARSeg Results on the nuScenes Test Set.

Method	Input Modality	~ mIoU (%)	barrier	bicycle	snq	car	const. veh.	motorcycle	pedestrian	traffic cone	trailer	truck	drive. surf.	other flat	sidewalk	terrain	manmade	vegetation
MINet	Lidar	56.3	54.6	8.2	62.1	76.6	23.0	58.7	37.6	34.9	61.5	46.9	93.3	56.4	63.8	64.8	79.3	78.3
LidarMultiNet	Lidar	81.4	80.4	48.4	94.3	90.0	71.5	87.2	85.2	80.4	86.9	74.8	97.8	67.3	80.7	76.5	92.1	89.6
UniVision	Lidar	72.3	72.1	34.0	85.5	89.5	59.3	75.5	69.3	65.8	84.2	71.4	96.1	67.4	71.9	65	77.9	71.7
PanoOcc	Lidar	71.4	82.5	32.3	88.1	83.7	46.1	76.5	67.6	53.6	82.9	69.5	96.0	66.3	72.3	66.3	80.5	77.3
OccFormer	Lidar	70.8	72.8	29.9	87.9	85.6	57.1	74.9	63.2	53.5	83	67.6	94.8	61.9	70.0	66.0	84.0	80.5
TPVFormer-Small	Camera	59.2	65.6	15.7	75.1	80.0	45.8	43.1	44.3	26.8	72.8	55.9	92.3	53.7	61.0	59.2	79.7	75.6
TPVFormer-Base	Camera	69.4	74.0	27.5	86.3	85.5	60.7	68.0	62.1	49.1	81.9	68.4	94.1	59.5	66.5	63.5	83.8	79.9
S2TPVFormer-Base	e*Camera	60.4	61.2	18.2	80.6	78.1	55.2	57.6	41.5	26.4	76.1	61.3	89.8	49.4	56.6	58.0	79.3	76.4

* represents the results produced upon completion of training over four epochs.

Our study explores the impact of varying temporal history fusion steps during inference on the performance of S2TPVFormer for 3D SOP. Results show that the optimal number of fusion steps differs across semantic classes, highlighting the untapped potential for improving temporal fusion in our model.

Conclusion & Future Directions

We demonstrate the significant potential of incorporating temporal information into model representations in 3D SOP.

The full potential of long-range temporal information, generation of dense SOP, and adaptation to downstream tasks like flow prediction is yet to be explored.

FEBRUARY 25 - MARCH 4, 2025 | PHILADELPHIA, PENNSYLVANIA. USA

Range of Temporal Attention