
Programming and Compiler Toolchain for Swarm
Robotic Systems

Isara Tillekeratne
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka
isara.tillek@gmail.com

Kavinaya Yogendren
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka

kavinaya1212@gmail.com

Hashini Wijerathne
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka

hashini.sharintha@gmail.com

Isuru Nawinne
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka

isurunawinne@eng.pdn.ac.lk

Mahanama Wickramasinghe
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka

mahanamaw@eng.pdn.ac.lk

Roshan Ragel
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka
roshanr@eng.pdn.ac.lk

Abstract - Swarm robotics is a field of research inspired
by the collective behaviours seen in natural swarms.
The primary characteristics of swarm robotics are agent
homogeneity, autonomy, locality and decentralised con-
trol. We introduce a user-friendly Integrated Develop-
ment Environment (IDE) equipped with a programming
and compiler toolchain designed to be compatible with
virtual and physical swarm robot platforms. The IDE
includes a graphical, block-based programming interface
to compose high-level algorithms following the bottom-up
design approach. Specialised support for behaviours such
as random movement with obstacle avoidance, dynamic
task allocation, and object finding are provided. The IDE
automatically converts graphical-level algorithms into C++
and Java and supports the compilation process. Generated
executables can be executed on virtual and physical swarm
robot platforms, supporting over-the-air (OTA) code up-
loading. Through this research, we accomplished our aim
of developing a user-friendly platform allowing researchers
and developers to program, compile, and execute diverse
swarm behaviours accurately and efficiently. The efficacy
of our work is validated using the results obtained by the
swarm behavioural experiments done using the developed
IDE.

Keywords - Swarm Robotics, Integrated Development
Environment (IDE), Programming Framework, Block-
Based Programming, Bottom-Up Design, Decentralized
Control, Dynamic Task Allocation, Object Finding Algo-
rithm

I. INTRODUCTION

Swarm robotics is a field of research and development in-
spired by the collective behaviour observed in natural swarms
such as flocks of birds, schools of fish, and colonies of
ants. The systems of multiple autonomous robots that work
together to achieve common objectives lay the foundation of
Swarm Robotics. It is based on the idea that individual agents,

following simple rules, can collectively exhibit complex be-
haviours and accomplish tasks that would be challenging for
a single robot to achieve. By coordinating their actions and
interactions, the swarm of robots can achieve robustness, scal-
ability, and adaptability. Research in swarm robotics focuses
on developing swarm behavioural algorithms, communication
protocols, programming frameworks, simulation platforms
and hardware platforms.

When considering the characteristics of swarm robotics, the
homogeneity of the agents, meaning that all the robots in the
swarm have similar capabilities, is crucial. This homogeneity
allows for simplicity in the design, as they can perform similar
tasks and communicate with one another using the same set
of rules. Being autonomous is another crucial characteristic
of swarm robotics. The principle of locality and decentralised
behaviour which is another fundamental in swarm robotics,
states that the behaviour of each agent depends primarily on
its local perception of the environment and the information it
acquires from its immediate neighbours. It implies that instead
of relying on a central controller, the swarm’s behaviour
arises from the individual agents’ decisions. This decentralised
nature enhances robustness, as the failure of a single agent
does not significantly affect the overall outcome of the swarm.

Some of the swarm behaviours that have been experimented
with are aggregation, dispersion, pattern formation, collective
movement, task allocation, source search and collective trans-
portation of objects. Real-world application domains such as
search and rescue missions, environmental monitoring, ware-
housing and logistics, construction, manufacturing processes,
surveillance and security are widely benefited from these
swarm behaviours.

Achieving a complex collective swarm behaviour is not
an easy task, as it requires handling the complexities of
programming each robot and the interactions between them.
Most of the available frameworks for swarm programming
focus only on software-level simulations, which do not discuss
extending them to real hardware robot platforms, and they



are limited only to a few pre-programmed sets of behaviours
and do not give developers the ability to re-program new
behaviours.

From this research, we developed an Integrated Devel-
opment Environment (IDE) that comprises a programming
and compiler toolchain for swarm robots to overcome the
mentioned complexities of swarm behavioural programming.
The IDE is compatible with an existing virtual and physical
swarm robot platform. The ability to compose high-level
algorithms is the main characteristic of the developed IDE. It
allows the users to program swarm behaviours in a graphical
block-based interface in a code-less approach. The swarm
behaviours are designed based on a bottom-up design approach
and categorised into four levels, providing re-programmability.
This abstraction manages the complexity of programming
swarm behavioural algorithms. The IDE has special support
for behaviours such as random movement with obstacle avoid-
ance, dynamic task allocation, and object finding. Then, it
automatically converts the graphical-level algorithm to C++
and Java programming languages and facilitates the compila-
tion process. The generated executables can be executed on
virtual and physical swarm robot platforms. In the context
of the physical robot platform, the IDE supports over-the-
air (OTA) code uploading which enables the re-programming
of hardware devices remotely without physical access. These
features enable the users to experiment with various swarm
behaviours, from programming to executing them on real robot
systems and observing the final outcome.

Multiple experiments with swarm behaviours were carried
out using the developed IDE. The experiments of the dy-
namic task allocation behaviour showcased that the swarm
robots converged to the desired task distribution while some
robots specialised in specific task types. The object-finding
behavioural experiments done using virtual and physical robots
demonstrated the ability to find and converge to an object
placed in the arena. These results validated the accuracy of
the programming, compiling, and execution processes of the
IDE. Finally, a qualitative performance analysis of the IDE
was carried out.

II. RELATED WORK

We conducted the literature review based on two main cat-
egories: swarm programming tools-based studies and swarm
behavioural algorithms-based studies.

A. Swarm Programming Tools and Frameworks

Creating swarm intelligence programming frameworks with
features such as visualisation tools, simulation environments,
and optimization algorithms has completely changed the field
of swarm intelligence by making it possible to create and
test sophisticated algorithms more quickly and effectively. The
following programming frameworks were well-identified in
industrial usage and related robotics research.

Swarm-Bench [1] is a benchmarking framework designed
to evaluate and compare swarm intelligence algorithms. Since
it primarily focuses on benchmarking and evaluation rather

than algorithm implementation, it may require additional pro-
gramming work to integrate custom algorithms.SwarmOps [2]
and PySwarm [2] are Python libraries specializing in swarm
intelligence optimization, with a focus on algorithms like
particle swarm optimization (PSO) and differential evolution
(DE). PySwarm offers a simpler interface with customization
options for algorithm parameters. In contrast, SwarmLib [3], a
Java-based library, covers a broader range of swarm-based op-
timization techniques, including PSO, ant colony optimization
(ACO), and artificial bee colony (ABC) algorithms. However,
these libraries, including SwarmOps and PySwarm, are limited
to optimization algorithms and lack support for real robot
systems.

Physicomimetics [4] employs a virtual physics framework
to simulate swarm behaviors by replicating the collective
dynamics observed in living organisms. Although effective
for simulating behaviors like pattern formation and obsta-
cle avoidance, Physicomimetics is constrained by predefined
rules, limiting its adaptability to dynamic real-world con-
ditions. Buzz [5] [3] introduces a programming language
and simulation framework tailored for swarm robotics system
development. Offering a high-level language for specifying
swarm behaviors and a simulator for testing algorithms, Buzz
is hardware-independent, overcoming hardware dependency
issues with its BuzzVM virtual machine. While it excels in
facilitating coordination and communication among robots to
implement complex collective behaviors, Buzz is primarily
focused on these aspects, and its scope does not extend to the
full spectrum of programmability required for diverse swarm
behaviors in dynamic environments.

Research and development efforts on swarm robotics, which
takes a bottom-up approach and emphasises decentralised
interactions among individual robots, or agents, to produce
collective behaviours, have been undertaken by iRobot [6].
Another research done for implementing a programming
framework for swarm robots [3] employs a bottom-up design,
emphasizing the integration of various built-in swarm robotic
behaviours. This framework, designed for minimal resource
hardware, includes a virtual pheromone-based communication
system and IR sensors, offering the flexibility to create and in-
tegrate behaviours ranging from preliminary actions like move-
Forward and angularTurn to more complex global behaviours
such as aggregate and pattern formation, demonstrated through
tests on a Java-based simulation platform.

While each tool or framework has its specific features, some
common limitations can be identified among them. Some tools
may focus on specific swarm intelligence algorithms, such as
PSO or ACO while neglecting other techniques. As the size
of the swarm rises, the scalability and performance of the
tools may become an issue. While many tools provide default
parameter settings for the algorithms, the ability to easily cus-
tomize them and incorporate domain-specific knowledge may
vary. Integrating swarm intelligence tools with existing sys-
tems or frameworks can be challenging. Compatibility issues,
dependencies, or lack of interoperability with other libraries
or platforms may require additional effort or workarounds.



Some tools are compatible with either physical or virtual
robots but not with both. Therefore, considering these common
challenges is essential when evaluating swarm programming
tools and frameworks.

B. Swarm Behavioural Algorithms

Flocking is one of the behavioural algorithms that we
encountered. Flocks are aggregations of many individuals
which move together with cohesion, flexibility, and alignment.
Craig Reynolds [8] introduced flocking behaviour to a swarm
of simulated birds called Boids, comprising three main rules:
collision avoidance, flock centring, and velocity matching.
Christoph Moeslinger [9] and his colleagues proposed an
algorithm which doesn’t require communication, memory or
global information. The results showcased that both the mo-
bility of the flock and aggregation time depended on the size
of the flock, and the algorithm seemed to work well with
comparatively small swarms.

Earlier approaches to pattern formation in swarm robotics
have primarily been based on the centralised strategy that
requires global knowledge. In contrast, the approach proposed
by Mehmet Serdar Güzel and his team [10] introduces an
algorithm that allows the swarm to form a circle pattern
autonomously while providing collision prevention and adapt-
ability in cluttered environments.

Sakthivelmurugan and his team [11] conducted a study
on foraging behaviour, proposing different strategies for item
searching including the expanding square, parallel sweep,
and divider approaches. Statistical analysis was conducted to
compare the strategies and the experiments revealed that the
parallel sweep with divider policy achieved the fastest item
detection time compared to the other tested strategies.

In parallel with the progress made in analyzing foraging
behaviour, Obute and his team [12] introduced the Repulsion-
Attraction (Rep-Att) algorithm. Inspired by natural swarm
behaviours, the algorithm uses sound signals to enable direct
communication among robots. The algorithm uses repulsive
signals to move robots away from the nest in search of the
target and attraction signals to attract other robots to the
detected targets. The simulation results have shown that the
Rep-Att algorithm improves the foraging efficiency compared
to random walk.

Dynamic task allocation, another important swarm be-
haviour, refers to the process of assigning tasks among in-
dividual robots in a swarm dynamically and adaptively. Based
on the decentralised strategy, Wonki Lee and DaeEun Kim
have proposed an algorithm [13] to handle dynamic task
allocation paired with the object foraging task using the
response threshold model. The results have shown that the
system can stochastically converge to the equilibrium of the
desired task distribution. Furthermore, the swarm can adapt to
the dynamic changes of the environment such as adding or
removing robots or tasks.

Nedjah and colleagues [14] conducted another research,
focusing on the problem of task allocation in robotic sys-
tems using evolutionary optimization algorithms. They suggest

Fig. 1. Solution Architecture.

breaking down complex tasks into simpler ones and coor-
dinating their execution as a solution. The paper highlights
the importance of adapting task allocation to changes in
the environment and swarm performance instead of using
a centralized approach. To enhance the allocation process,
different techniques are proposed, including a distributed job
allocation algorithm based on Particle Swarm Optimization
(PSO).

III. METHODOLOGY

Our research focuses on demonstrating the effectiveness of
a software engineering strategy aimed at overcoming chal-
lenges in developing swarm robotic applications. We center
our approach on delivering a complete solution via a user-
friendly Integrated Development Environment (IDE). This IDE
is specifically designed to efficiently create high-quality swarm
behaviours. The main objective of our IDE is to enable
users, including those without programming expertise, to the
smooth creation and compilation of codes customized for
both physical and virtual robots. Moreover, the IDE plays
a vital role in seamlessly bringing together these platforms,
facilitating thorough testing and practical applications in real-
world scenarios.

A. Establishment of System Architecture

At the foundation of our approach is establishing a solid
system architecture that effortlessly connects physical and
virtual robot platforms with the IDE. Fig. 1 shows our solution
architecture based on previous research about physical and
virtual robot platforms [17].

The physical robot operates binaries written in C++. Its
hardware is set up with components for understanding its
surroundings and communication. In the front, it has a distance
sensor and a color sensor, providing the robot with the



capability to sense its surroundings. Additionally, a Neopixel
LED is incorporated, allowing for visual indicators or signals.
To help it communicate and interact, the robot has four IR
sensors in different directions. These sensors allow the robot
to send and receive signals using infrared light. Furthermore,
the robot has a WiFi module, enhancing its connectivity.

The PeraSwarm Virtual robot platform comprises a Java
virtual robot application, a Node.js simulator, and a Visualizer
interface. The simulator has the ability to give distance and
colour readings for specific angles, change the colour of
robots, and configure the virtual platform arena. The virtual
robot code is responsible for generating robots, controlling
their behaviour based on algorithms, and facilitating inter-
robot communication. The research primarily focuses on de-
veloping an IDE customized for creating complex swarm
behaviours, emphasizing the significance of testing and simu-
lation within a virtual robot platform before transitioning to a
physical robot platform.

B. Development of IDE Components

The IDE comprises a React frontend and a Docker container
containing a Node.js backend, along with separate compilers
for the virtual and physical platforms.

1) High-level algorithm composition: Our main goal is
to facilitate high-level algorithm composition for users who
may not have programming expertise, especially those in-
volved in researching and analyzing swarm behaviours. With
a specific focus on the educational sector, we have prioritized
the development of a user-friendly interface. To meet these
objectives, our system incorporates a block-based visual pro-
gramming technique. Users can effortlessly design complex
swarm behaviours by intuitively dragging and dropping blocks
within the IDE. To achieve this user-friendly approach, we
have integrated the Google Blockly library into our React
frontend, providing an interface that not only ensures ease
of use but also allows for the seamless conversion of visual
representations into programming code.

Diverse Blocks for Varied Functionalities: When planning
our design, we focus on abstraction and high-level modelling
methods, following the principles of the Analysis and Design
discipline. This includes creating various types of blocks,
such as behaviour, I/O (for reading sensors and activating
actuators), and general blocks (for programming elements like
loops, conditions, and variables). These blocks cover specific
functions like reading infrared, colour, distance, and proximity
sensors, as well as controlling neopixel LEDs.

Our approach to designing behaviour blocks follows a
bottom-up method, as illustrated in Fig. 2, starting with
basic (atomic) behaviours and gradually progressing to more
complex global-level behaviours.

• Global behaviours: Complex collective behaviours repre-
senting the highest level of complexity.

• Cluster behaviours: Behaviours involving multiple enti-
ties, forming an intermediate level of complexity.

• Pair behaviours: Behaviours specifically involving two
entities, such as two robots or a robot and an object.

Fig. 2. Bottom-up Approach.

• Atomic behaviours: Basic behaviours executed by a sin-
gle robot without interaction or sensing involvement with
others.

This structured hierarchy allows users to smoothly combine
low-level behaviours, building complex collective swarm be-
haviours. By using low-level behaviour blocks to construct
high-level behaviours, we ensure consistency between the
behaviour in both physical and virtual platforms. Atomic
behaviours, being the basic and straightforward units of be-
haviour, are a common factor in both platforms, guaranteeing
uniformity in their execution.

2) Conversion of Visual Representations to Code: The
graphical-level algorithms created through block-based visual
programming are converted into programming code using the
Google Blockly library. Each block represents C++ and Java
code, allowing users to visually design and manipulate code
blocks to generate executable code for swarm algorithms.

3) Remote Cross-Compilation Support : The IDE combines
remote cross-compilation support by using the PlatformIO
(PIO) CLI and Maven. The backend handles tasks such as
compiling the generated code, generating binaries for the
physical platform using the PlatformIO CLI, and producing jar
files for the virtual platform using Maven. This comprehensive
approach lets the tool create programs that work on different
platforms, giving us flexibility in deploying.

Moreover, the IDE offers developers the ability to manage
version control for the compiled binaries and class files. This
ensures that the latest versions are consistently available for
deployment across the swarm of robots. The compiled binaries
and class files are stored in a centralised repository, accessible
by the robots through HTTP requests. This centralised storage



mechanism provides efficient version control and seamless
access for the deployment of the most up-to-date executables
to the swarm of robots.

4) Over-the-Air (OTA) Code Upload and Execution: The
system enables the download of new executables to the virtual
and physical robots wirelessly using WiFi modules and a cen-
tral server. This central server is configured to communicate
with the swarm robots using the MQTT messaging protocol.
When the swarm robots are ready for new programs, the
central server sends them a message through MQTT to start the
download. Then, the new binaries and jar files are packaged
and sent back to the swarm robot using MQTT messaging.
In the case of physical robots, the WiFi module receives the
binaries over the air and stores them in its memory. For virtual
robots, the downloaded jar file triggers the initiation of a new
application, simultaneously terminating the existing one. This
smooth transition ensures that the robot is ready to execute
the new code, which may involve updated algorithms or new
features. Throughout this process, the central server monitors
the progress of the download and installation, making sure that
each robot receives the correct executables and confirming the
successful completion of the process. This approach allows
for updates to be applied to the swarm robots efficiently and
smoothly, eliminating the need for physical connections or
manual help.

5) Enhancement of IDE Features : As we continued work-
ing on the development, we made the IDE even better by incor-
porating more interesting features. These additional features
include the capacity to program new behaviours, manipulate
and visualize the virtual arena, and concurrently generate
executables for multiple robots. Furthermore, the IDE includes
a collection of built-in algorithms, giving users the option
to use them directly without the need to create new ones
from scratch. Moreover, the connectivity between the IDE
and both virtual and physical robot platforms is enhanced
through the integration of the MQTT message-sending feature.
This feature makes it easy for the IDE to communicate and
control the robots smoothly, ensuring efficient coordination
and interaction. The integration of these additional features
and strengthened connectivity further enables users in creating,
testing, and refining swarm behaviours within the developed
IDE.

6) Validation through Experiments : To ensure the effec-
tiveness and performance of the IDE, a series of experiments
are formulated and executed. These experiments validate the
tool’s functionality in different scenarios, from foundational
setup to feature enrichment, ensuring its adaptability and
efficiency in creating complex swarm behaviours.

IV. EXPERIMENTS

We conducted a series of experiments using the developed
IDE to ensure the efficacy of our work. We started out
with a simple behaviour of random movement while object
detection using a single physical robot. Then, the experiments
were expanded to dynamic task allocation and object-finding

Fig. 3. Dynamic Task Allocation Behaviour Flow.

behaviours using both virtual and physical swarm robot plat-
forms.

A. Dynamic Task Allocation Behaviour

The dynamic task allocation behaviour was tested in the
virtual robot platform and the algorithm was inspired by the
research conducted by Wonki Lee and DaeEun Kim [13]. In
this experiment, initially, red and blue objects are placed on
the robot arena randomly. The red and blue coloured objects
denote two different tasks (red task, blue task). Then, the
swarm robots which are initially assigned to task red are also
placed in the arena randomly and they start moving around
while avoiding the obstacles. The final goal is to converge
and stabilise the swarm robots to the desired task distribution
among the robots. The desired task distribution is defined by
the distribution of the coloured objects.

1) Task demand and task supply estimation: As per the
algorithm, each robot maintains two fixed-length queues to
store the recent history that it sees with regard to task demand
and task supply. The task demand corresponds to the colours
of the neighbouring objects and the task supply corresponds
to the tasks that are assigned to the neighbouring robots that
it sees. The task demand information is collected by using the
colour sensor readings in a specific time interval and the task
supply information is collected by inter-robot communication.
When a robot assigns a task to itself, it communicates that
to the neighbouring robots such that the neighbouring robots
can update their task supply queues. The reason to read the
colour sensor readings in a specific time interval is to avoid
updating the queues with duplicate information. Then, the
global task demand and the supply of the environment for
each type of task are estimated using the local history stored
in the queues. For example, if the queue length is 10, and in
the task demand queue, 6 elements correspond to the colour
red, the task demand estimation for task red is 0.6 for that
specific robot.



(a) Scenario 1 with 20% red and 80%
blue.

(b) Scenario 2 with 60% red and 40%
blue.

Fig. 4. Two Scenarios with Two Different Task Proportions.

2) Response threshold model: After calculating the task
demand and supply estimations for each task type, the re-
sponse threshold value for each task type is updated. This
is a value between 0 and 1. The response threshold model
is explained in detail in the research conducted by Wonki
Lee and DaeEun Kim [13]. The logic behind the response
threshold model is that if the task demand is higher than
the task supply the response threshold for that certain task
type decreases. Once the response threshold decreases, the
probability of selecting that task type increases as per their
proposed task selection probability function. This implies that
when the task demand is higher than the supply for a specific
task type, the robot becomes more likely to select it. When
all the swarm robots behave in this same manner depending
on their local information, the swarm collectively converges
to the desired task distribution over time. This is an iterative
process and proof is given that their response threshold model
stochastically converges to the equilibrium of the desired
task distribution. Fig. 3 shows the flow of the dynamic task
allocation algorithm.

3) Characteristics of the behaviour: This behaviour does
not depend on any global knowledge or a controller rather the
control happens in a decentralised manner which preserves the
qualities of the swarm behaviours. Each robot makes its own
decisions following a simple set of rules based on the local
information that it sees and collectively the swarm achieves
the complex behaviour. As mentioned before, the algorithm
has the ability to make the swarm robot system converge
and stabilise in the desired task distribution. Furthermore,
the robots have the ability to dynamically adjust themselves
according to the changing environmental conditions such as
adding or removing coloured objects or robots. The change
of the response threshold values over time shows how certain
robots tend to get specialised in doing a specific task type over
time. These characteristics are discussed further along with the
experiments conducted and the test results obtained.

4) The experimentation process : The first step is pro-
gramming the dynamic task allocation behaviour using the
block-based visual programming interface. The IDE provides
multiple approaches for the user. The user has the ability to

program the entire algorithm from scratch using the funda-
mental blocks. Another approach is using the in-built dynamic
task allocation behaviour option directly. The third approach is
using the level-based comprehensive set of behavioural blocks
specifically designed for this behaviour. In this case, cluster
behavioural blocks such as random movement with obsta-
cle avoidance, observe environment, evaluate task demand,
evaluate task supply, select task and atomic blocks such as
show task which indicates the selected task by lighting up
the neo pixels and sends messages to the neighbouring robots
are designed to be used when programming the dynamic task
allocation behaviour. In the experimentation process, the third
approach was used for programming. Once the programming
was completed, the Java option was selected to generate Java
codes since the goal was to execute the program in the virtual
robot platform. Then, the generated code was reviewed and the
taskSet arena type was selected as the simulation environment.
Afterwards, the robots were added by selecting the preferred
locations on the arena grid displayed on the user interface.
Subsequently, the code was compiled and once the compilation
status was indicated as successful, the option was selected to
execute the program and the newly programmed behaviour
started executing on the virtual robot platform automatically.
By evaluating the results obtained by the executed behaviour,
conclusions can be drawn about the successful programming,
compilation and execution process of the IDE.

B. Object Finding Behaviour

The object finding behaviour was tested on both virtual
robot and physical robot platforms. The object finding algo-
rithms employed in virtual robot and physical robot platforms
differ due to available facilities, showcasing adaptability to the
distinct challenges and capabilities of each environment.

1) Implementation of object finding algorithm in virtual
robot platform : In this experiment, the virtual robot used
object detection with obstacle avoidance to find an object of a
specific colour in the environment and the robot employed
proximity sensors to gather distance and colour informa-
tion from various angles in its surroundings. The robot is
programmed to detect objects with a predefined colour by
exploring its surroundings and determines whether an object
is present by comparing the colour of the object (predefined
colour) with the colour it detected using proximity sensors.
Upon detecting the target colour, the robot dynamically re-
sponds based on the proximity of the object. If the object
is within a specified distance threshold, the robot transitions
to a ”WAIT” state, signalling that the object has been found
within the acceptable range. If the object is detected but is
beyond the acceptable distance, the robot adjusts its position
by turning toward the object’s direction and moving forward
to reduce the distance. This adaptive response is contingent on
the angle at which the object is detected. The robot changes
its colour to object colour when the object is detected, aiding
in the observation of its state.

2) Implementation of object finding algorithm in physical
robot platform : The object finding behaviour of physical



Fig. 5. Time vs Task distribution proportion of scenario 1. Fig. 6. Time vs Task distribution proportion of scenario 2.

robots involves the integration of a colour sensor and a
distance sensor, both positioned at the front of the robot,
which enables the robot to exclusively detect objects situated
in its forward path. The robot utilizes a distance sensor to
measure the distance between itself and potential obstacles.
If the measured distance is less than the distance threshold,
indicating the presence of a potential obstacle, the algorithm
proceeds to randomly choose a direction (left or right) for
corrective actions. Then it reads the color information from
a color sensor to identify the color of the detected object. If
the detected colour is indicative of the target object, the robot
changes its colour to the object colour, and the robot comes
to a stop, signalling that the object has been found within
the acceptable range. If the detected colour does not match
the target colour, the robot performs a backward movement
for 1 second. It then enters a loop where it rotates until the
distance to the obstacle is less than the distance threshold
and the detected colour is not indicative of the target object.
This loop has a maximum iteration count of 5. Regardless of
the colour detection outcome, the robot colour visualization
is adjusted accordingly. If no obstacle is detected within the
threshold distance, the robot moves forward for 1 second.

C. Contrasting object finding behaviour in virtual robot and
physical robot: Navigating limitations

When comparing the object-finding behaviours of virtual
and physical robots, both systems have the same primary
objective of discovering objects based on predefined object
colours. However, their implementations diverge significantly.
The virtual robot provides an adaptable method by modifying
its movement in response to simulated sensor inputs. It is
outfitted with a virtual proximity sensor at multiple angles.
The physical robot, on the other hand, can only perceive one
direction because it is dependent on front-facing colour and
distance sensors. The virtual robot’s adaptability is curtailed
only by simulated conditions, while the physical robot faces
real-world challenges, such as rotating to identify unobstructed
directions.

V. RESULTS AND DISCUSSION

A. Dynamic Task Allocation Behaviour

1) Testing of convergence to the desired distribution: Mul-
tiple tests were conducted to test different characteristics of
the dynamic task allocation behaviour. The main characteristic
tested was the convergence to the desired task distribution. The
dimensions of the robot arena were defined as 70×70 units2,
with the objects characterised by a radius set to 5 units. For
this, ten red and blue coloured objects were placed on the
arena randomly. The simulation environment was set with five
robots which were initially assigned to task red and placed
around the arena randomly. The tests were conducted using
two scenarios with two different task proportions as shown in
the Fig. 4. In the first scenario (Fig. 4(a)), the task proportion
was set to 20% red, 80% blue which indicates that two objects
are red and 8 objects are blue out of the ten objects placed.
In the second scenario (Fig. 4(b)), the task proportion was set
to 60% red, 40% blue which indicates that six objects are red
and four objects are blue out of the ten objects placed. Each
scenario was executed 10 times to present the average results.

The average results obtained for each of the scenarios are
shown in Fig. 5 and Fig. 6. The results shown indicate the
change in the task distribution proportion among the robots
over time. In both scenarios, the proportion starts as 100% red,
0% blue, since all the robots are assigned to task red initially.
As time elapses, the robots start switching between the two
task types which makes the distribution proportion fluctuate.
It is evident from the observations that, in every scenario, the
robots have consistently converged to the intended task distri-
butions and stabilised. In the initial scenario, this distribution
is 20% red and 80% blue, while in the subsequent scenario, it
is 60% red and 40% blue. The evidence presented supports the
conclusion that in this experiment, the dynamic task allocation
behaviour is executed as the user intended which implies the
successful programming, compilation and execution process
of the IDE.



Fig. 7. Convergence of Eight Robots to Identify the Target Object.

2) Testing task specialisation of the robots: By monitoring
the change of the threshold values for each task type over
time, it can be observed that some of the robots get strongly
specialised in performing a certain task type. If the response
threshold of task red is very high (closer to 1) and the response
threshold of task blue is very low (closer to 0), it implies
that the specific robot is strongly specialised in performing
task blue. This phenomenon can be identified as a replication
of the division of labour in natural swarms where some
individuals become more specialised in performing a specific
task over time. For example, in an ant colony, some ants can be
specialised in specific task types such as cleaning, foraging,
and mound building. Individuals with strong specialisations
typically switch tasks rarely. In contrast, individuals with weak
specialisations can shift between tasks flexibly, according to
the environmental conditions.

When obtaining the test results in Fig. 8 and Fig. 9, the
dimensions of the robot arena were defined as 90×90 units2,
with the objects characterised by a radius set to 5 units. For
this, ten red and blue coloured objects were placed on the
arena randomly. The simulation environment was set with ten
robots which were initially assigned to task red and placed
around the arena randomly. The task distribution proportion
was set to 40% red, 60% blue. Fig. 8 indicates the initial
and the final threshold values for tasks red and blue for
each robot. The results demonstrate that the robots with IDs
0, 4, and 7 exhibits a substantial increase in their final red
threshold values, approaching approximately 1, accompanied
by a corresponding decrease in blue threshold values, reaching
nearly 0. According to that observation, it can be concluded
that robots 0, 4, and 7 are strongly specialised in performing
task blue. Supporting the same conclusion, Figure 9 illustrates
the change in the response threshold values of the robot 4 over
time.

B. Object Finding Behaviour

In this experiment to assess the object finding behavior
in a virtual robot platform, eight robots were strategically
positioned within an arena alongside a singular object desig-
nated to be identified. The object, initially assigned the colour
blue, served as the target for the robots. As the algorithm

initiated, the robots dynamically navigated the environment,
leveraging object detection coupled with obstacle avoidance.
After a period of execution, all eight robots successfully
converged in proximity to the object and changed their colours
to blue as illustrated in Fig. 7. The final outcome shows how
well the algorithm works achieving the collective objective of
identifying and localizing the object.

In this experiment evaluating object-finding behaviour on
a physical robot platform, five robots were strategically posi-
tioned at different locations within an arena, with all being
designated as targets represented by the colour blue. The
algorithm was initiated, prompting the robots to dynamically
navigate the environment using a combination of object de-
tection and obstacle avoidance strategies. As the execution
progressed, all five robots successfully converged in close
proximity to the object, changing their colours to blue. The
final outcome demonstrates the algorithm’s effectiveness in
achieving the collective goal of identifying and localizing the
target object. However, an observed issue emerged during the
experiment. At times, instead of converging near the target,
robots tended to form a chain by closely following the nearest
robot. This behaviour represents a challenge in the algorithm’s
optimization, and addressing this issue will be a focus for
further refinement in future iterations of the experiment. Iden-
tifying and resolving such challenges is integral to ensuring
the algorithm’s robustness and enhancing its performance in
real-world scenarios.

C. Qualitative Performance Analysis

This section discusses the qualitative performance analysis
of the developed IDE in terms of three main characteristics;
usability of the graphical programming interface, flexibility
and re-programmability of swarm behaviours, and compatibil-
ity with both physical and virtual robot platforms.

1) Usability of the graphical programming interface : The
IDE introduces a user-friendly graphical block-based interface,
a significant enhancement to programming usability. Since
this is a code-less approach, it is highly beginner-friendly
and users with no prior programming knowledge can easily
adapt to the platform and experiment with swarm behaviours.
It stands out for its ability to mitigate the learning curve
traditionally associated with programming frameworks us-
ing Domain-Specific Languages (DSL) and other code-based
approaches. The intuitive visual approach facilitates quicker
adoption and proficiency, making swarm robotics development
more accessible to a diverse range of programmers.

2) Flexibility and re-programmability of behaviours: A
pivotal aspect of the IDE is its capacity to foster flexi-
bility in programming swarm behaviours, coupled with re-
programmability. The users are given multiple options to
programming swarm behaviours such as programming new
swarm behaviours from scratch using the fundamental blocks,
experimenting with in-built swarm behaviours such as dy-
namic task allocation, object finding, and random movement
with obstacle avoidance, or using the provided behaviour-
specified blocks to program them easily. Therefore, through its



Fig. 8. Robot Id Vs Initial/Final Response Threshold Values. Fig. 9. Response Threshold Change of the Robot 4, over Time.

modular and scalable graphical blocks, users enjoy the free-
dom to experiment with and re-program behaviours seamlessly
without limiting themselves to a fixed set of swarm behaviours.

3) Compatibility with Both Physical and Virtual Robot Plat-
forms : The IDE transcends conventional limitations by offer-
ing compatibility with both physical and virtual swarm robot
platforms. Once the behaviours are programmed, with only
a few clicks, the users can easily execute them and observe
the outcome in both virtual and physical robot platforms. This
versatility facilitates a seamless transition between simulated
environments and real-world implementations. Providing a
unified platform for development and testing, the IDE ensures
that the algorithms created can be readily applied and validated
on both virtual and physical robot platforms.

VI. CONCLUSION

In this study, we have introduced a framework for develop-
ing and executing swarm behaviours in a unified environment
that has focused on the integration of block-based visual
programming with a user-friendly integrated development en-
vironment (IDE) across both virtual and physical platforms.
The IDE with features like block-based visual programming,
code generation, compilation, and OTA code upload, enhances
the user experience and deployment flexibility. Significantly
advancing swarm robotics, our decentralized dynamic task
allocation and object-finding behaviours demonstrated the con-
vergence of swarm robots and adaptability through extensive
experiments. Inspired by the division of labour observed in
natural swarms like ants and bees, our dynamic task allocation
behaviour employs a decentralized approach, enabling each
robot to make decisions based on local information. Our
object-finding algorithms, experimented on both virtual and
physical robot platforms, showcased a collective ability to
identify and localize target objects in simulated and real-
world scenarios. Overall, multiple experiments with swarm be-
haviours using the developed IDE have conclusively observed
the accuracy and reliability of the programming, compiling,
and execution processes and it can be identified as a useful

tool for the educational and research sectors in the context of
programming complex swarm behaviours.

REFERENCES

[1] P. H. V. Lima, E. Ferrante, A. E. Turgut, and M. Dorigo, “Swarm-
bench: A bench- marking toolkit for swarm robotics,” Robotics and
Autonomous Systems, vol. 97, pp. 10–20, 2017.

[2] Madhushanka, H. M. K., & Perera, A. L. H. E. (2023). Swarm Intelli-
gence Programming Framework Literature Review. February.

[3] Dassanayaka, M., Bandara, T., Adikari, N., Nawinne, I., & Ragel, R.
(2020, July). A Programming Framework for Robot Swarms. In 2020
Moratuwa Engineering Research Conference (MERCon) (pp. 578-583).
IEEE.

[4] Spears, W.M., Spears, D.F., Heil, R., Kerr, W., & Hettiarachchi, S.
(2005). An overview of physicomimetics. Lecture Notes in Computer
Science, 3342, 84–97.

[5] Pinciroli, C., Lee-Brown, A., & Beltrame, G. (2015). Buzz: An Exten-
sible Programming Language for Self-Organizing Heterogeneous Robot
Swarms. http://arxiv.org/abs/1507.05946.

[6] McLurkin, J., Kaelbling, L.P. (1999). Stupid Robot Tricks: A Behavior-
Based Distributed Algorithm Library for Programming Swarms of
Robots.

[7] Yi, W., Di, B., Li, R., Dai, H., Yi, X., Wang, Y., & Yang, X. (Year not
specified). An Actor-based Programming Framework for Swarm Robotic
Systems.

[8] Reynolds, C.W. (1987). Flocks, herds, and schools. Computer Graphics,
21(4), 25–34.

[9] Moeslinger, C., Schmickl, T., & Crailsheim, K. (n.d.). LNAI 5778 - A
Minimalist Flocking Algorithm for Swarm Robots.

[10] Güzel, M.S., Gezer, E.C., Ajabshir, V.B., & Bostancı, E. (Year not
specified). An Adaptive Pattern Formation Approach for Swarm Robots.

[11] Sakthivelmurugan, E., Senthilkumar, G., Prithiviraj, K.G., & Tinu De-
vraj, K.R. (Year not specified). Foraging behavior analysis of swarm
robotics system.

[12] Obute, Simon O., Dogar, Mehmet R., Dogar, Mehmet R. (2019): Simple
Swarm Foraging Algorithm Based on Gradient Computation.

[13] Lee, W., & Kim, D.E. (2019). Adaptive approach to regulate task distri-
bution in swarm robotic systems. Swarm and Evolutionary Computation,
44, 1108–1118. https://doi.org/10.1016/j.swevo.2018.11.005

[14] Nedjah, N., De Macedo Mourelle, L. (2015). Pso-based distributed
algorithm for dynamic task allocation in a robotic swarm

[15] Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm
robotics: A review from the swarm engineering perspective. Swarm
Intelligence, 7(1), 1–41.

[16] Navarro, I., & Matı́a, F. (2013). An Introduction to Swarm Robotics.
ISRN Robotics, 2013, 1–10.

[17] Dilshani Karunarathna, Nuwan Jaliyagoda, Ganindu Jayalath, Janaka
Alawatugoda, Isuru Nawinne, Roshan Ragel. Mixed-Reality based
Multi-Agent Robotics Framework for Artificial Swarm Intelligence
Experiments, IEEE Access, vol. 11, 2023


