
Programming and Compiler Toolchain for
Multi-Agent Systems

Isara Tillekeratne
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka
isara.tillek@gmail.com

Kavinaya Yogendren
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka

kavinaya1212@gmail.com

Hashini Wijerathne
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka

hashini.sharintha@gmail.com

Isuru Nawinne
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka

isurunawinne@eng.pdn.ac.lk

Mahanama Wickramasinghe
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka

mahanamaw@eng.pdn.ac.lk

Roshan Ragel
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka
roshanr@eng.pdn.ac.lk

Sithumini Ekanayake
Department of Computer Engineering

University of Peradeniya
Peradeniya, Sri Lanka

sithuminie@eng.pdn.ac.lk

I. INTRODUCTION

Multi-agent systems (MAS) are a core area of research that
refers to systems composed of multiple independent entities,
often called agents, interacting and cooperating to achieve
common goals. MAS research spans a range of technical
problems, such as designing MAS to incentivise certain agent
behaviours, developing algorithms to achieve specified goals in
a MAS, and how information is communicated and propagated
among agents. Concepts of multi-agent systems can be applied
to enhance coordination, decision-making, and overall system
performance in various domains, such as distributed sensor
networks, Internet of Things (IoT) networks, autonomous ve-
hicle systems, and online social networks comprising hardware
and software-based agents. Out of these domains, our research
focuses on swarm robotics which plays an important role
within multi-agent systems.

Swarm robotics is a field of research and development that
draws inspiration from the collective behaviour observed in
natural swarms, such as flocks of birds, schools of fish, or
colonies of ants. It involves the study of systems composed
of multiple autonomous robots, known as agents, that work
together to achieve common goals. Swarm robotics is based on
the idea that simple individual agents, following simple rules,
can collectively exhibit complex behaviours and accomplish
tasks that would be challenging for a single robot to achieve.
By coordinating their actions and interactions, the swarm of
robots can achieve robustness, scalability, and adaptability.
Research in swarm robotics focuses on developing swarm

Identify applicable funding agency here. If none, delete this.

behavioural algorithms, strategies, and communication proto-
cols, developing swarm programming frameworks, simulation
platforms and hardware platforms.

When considering the characteristics of swarm robotics,
the homogeneity of the agents, meaning that all the robots
in the swarm have similar capabilities and functionalities, is
crucial. This homogeneity allows for simplicity in the design
and control of individual agents, as they can perform similar
tasks and communicate with one another using the same set
of rules. Being autonomous is another crucial characteristic
of swarm robotics. Each agent can make decisions based on
its local perception of the environment and interactions with
neighbouring agents. This enables the swarm to exhibit self-
organization and adaptability to changing conditions.

The principle of locality and decentralized behaviour is
another fundamental in swarm robotics. It states that the
behaviour of each agent depends primarily on its local in-
teractions and the information it acquires from its immediate
neighbours. Agents exchange information through local com-
munication channels to make decisions and coordinate their
actions. Decentralized behaviour implies that instead of relying
on a central controller or leader, the behaviour of the swarm
emerges from the interactions and decisions of the individual
agents. This decentralized nature enhances robustness, as the
failure or removal of a single agent does not significantly affect
the overall performance of the swarm.

Some of the swarm behaviours that have been experimented
with are aggregation, dispersion, pattern formation, collec-
tive movement, task allocation, source search and collective
transportation of objects. These swarm behaviours can be



advantageous in real-world applications such as search and
rescue missions, environmental monitoring, warehousing and
logistics, construction, manufacturing processes, surveillance
and security.

Achieving a complex swarm behaviour is not an easy task.
Programming swarm robots can be tedious as it requires
dealing with low-level complexities of handling and program-
ming each robot and the interactions between the robots such
that complex collective behaviours are achieved. Most of the
available frameworks for swarm programming focus only on
software-level simulations, which do not discuss extending
them to real hardware robot platforms, and they are limited
only to a few pre-programmed sets of behaviours and do not
give developers the ability to change the inbuilt behaviours or
use them to integrate and build new behaviours.

From this research, we aim to develop an Integrated Devel-
opment Environment (IDE) that comprises a programming and
compiling toolchain for swarm robots as a multi-agent system.
The IDE is developed with three main characteristics that
address the mentioned complexities in swarm programming.
The ability of high-level algorithm composition is the main
characteristic of the proposed IDE. It allows the users to
program swarm behaviours in a graphical interface in a code-
less approach. The swarm behaviours are designed based on
a bottom-up design approach where the users can program
more complex top-level behaviours using the low-level atomic
behaviours. The behaviours are categorized into multiple lev-
els, giving the users a clear understanding of combining and
scaling them up without delving into low-level details. This
abstraction can help manage the complexity of programming
large swarms with sophisticated swarm behaviours with less
effort.

The IDE automatically converts the graphical-level algo-
rithm to a programming language which then facilitates the
compilation process for creating binaries that can be executed
on the robots supporting various hardware platforms. As
the final characteristic, it supports uploading the binaries to
the robots over the air (OTA). OTA programming refers to
updating or reprograming hardware devices remotely with-
out physical access. This capability is attained by wireless
communication using WiFi, MQTT messaging protocol, and
a central server which enables quick deployment of updates to
multiple robots simultaneously and gives higher convenience,
efficiency, and flexibility.

II. RELATED WORK

We conducted the literature review based on two main cate-
gories: swarm programming tools-based studies and swarm be-
havioural algorithms-based studies. A summary of the studies
discussed in the literature review, including the key concepts
focused on, is shown in Figure 1.

A. Swarm Programming Tools and Frameworks

Research in Multi-Agent Systems (MAS) has recently led to
the development of practical programming languages and tools
appropriate for implementing such systems. Creating swarm

intelligence programming frameworks has completely changed
the field of swarm intelligence by enabling scientists to create
and test sophisticated algorithms more quickly and effectively.
Researchers can study and examine the behaviour of swarm
algorithms using these frameworks’ various features, which
include visualization tools, simulation environments, and opti-
mization algorithms. The following programming frameworks
were well-identified in industrial usage and related robotics
research.

Swarm-Bench [1] is a benchmarking framework designed
to evaluate and compare swarm intelligence algorithms. It
provides a standardized set of benchmark problems, perfor-
mance metrics, and statistical analysis tools for assessing
the effectiveness and efficiency of swarm-based optimization
algorithms. Swarm-Bench facilitates fair comparisons between
different algorithms by providing a common platform and met-
rics for evaluation. Since it primarily focuses on benchmarking
and evaluation rather than algorithm implementation, it may
require additional programming work to integrate custom
algorithms.

SwarmOps [6] is a Python library for swarm intelligence
optimization. It provides a set of algorithms inspired by swarm
behaviour, such as particle swarm optimization (PSO) and
differential evolution (DE). It focuses on providing a flexible
and extensible framework for implementing and experimenting
with swarm intelligence algorithms. SwarmOps offers vari-
ous optimization techniques and allows users to customize
algorithm parameters and problem domains. PySwarm [6]
is a Python library focusing on particle swarm optimiza-
tion (PSO) algorithms. It provides a simple and easy-to-
use interface for implementing PSO and experimenting with
different algorithm variants. PySwarm offers customization
options for algorithm parameters, such as the number of
particles, velocity update rules, and termination conditions.
But this is less comprehensive compared to some other li-
braries. Both SwarmOps and PySwarm are limited to swarm
intelligence optimization algorithms. SwarmLib [1] is a Java-
based library for swarm intelligence algorithms. It offers a
collection of swarm-based optimization techniques, including
PSO, ant colony optimization (ACO), and artificial bee colony
(ABC) algorithms. SwarmLib aims to provide comprehensive
tools and algorithms for researchers and developers working
on swarm intelligence optimization problems. But libraries
like SwarmLib can be tested only with a pre-programmed set
of swarm behaviours since those are just mere presentation
tools rather than development libraries. And they don’t discuss
extending the simulation support to a real robot system which
eventually is the end goal.

Physicomimetics [10], in the context of implementing
swarm behaviours, involves utilizing a virtual physics frame-
work to simulate and replicate the collective dynamics and be-
haviours observed in swarms of living organisms. It combines
principles from physics and biology to create artificial systems
that exhibit emergent properties and complex behaviours simi-
lar to those observed in natural swarms. It incorporates forces,
velocities, accelerations, and collision detection concepts to



Fig. 1. Summary of the Literature Review.

simulate the physical constraints and interactions between the
agents and their environment. This virtual physics framework
typically operates based on predefined rules or algorithms that
govern the behaviour of agents. And it is limited to a small
set of behaviors, including pattern formation, pattern keeping,
and obstacle avoidance. While this allows for the simulation
of specific swarm behaviours, and they don’t discuss the
programmability of new behaviours, it may limit the system’s
adaptability and responsiveness to changes in the environment
or swarm conditions. Real-world swarms exhibit adaptive and
dynamic behaviours that may be challenging to capture solely
within this framework.

Buzz [7] [1] is a programming language and simula-
tion framework designed for developing and studying swarm
robotics systems. It provides a high-level language for spec-
ifying swarm behaviours and a simulator for testing and
analyzing swarm robotics algorithms. Buzz comes with three
top-down programming primitives Swarm, Neighbours, and
Virtual Stigmergy. It resolves the issue of hardware depen-
dency using a virtual machine called BuzzVM. Buzz supports
the coordination and communication among individual robots
in a swarm, allowing the implementation of complex collective
behaviours. But this is limited to coordination and communi-
cation aspects of swarm robotics.

iRobot [11] has been involved in research and devel-
opment projects exploring swarm robotics, which focuses
on coordinating and cooperating large groups of robots to
achieve collective behaviours and tasks. One aspect of iRobot’s
approach to swarm robotics involves employing a bottom-
up strategy. A bottom-up strategy in swarm robotics refers
to a decentralized approach where individual robots, often

called agents, interact with their local environment and each
other based on simple rules or algorithms. The collective
behaviour emerges from the interactions and coordination of
these individual agents without the need for centralized control
or explicit global instructions. This approach has applications
in various domains, such as search and rescue, environmental
monitoring, and distributed sensing, where a coordinated group
of robots can accomplish tasks more efficiently and effectively
than individual robots.

Similarly, another research done for implementing a pro-
gramming framework for swarm robots [1] presented sev-
eral built-in swarm robotic behaviours using the bottom-
up design approach. It discusses the benefits of using the
bottom-up rather than the top-down approach when designing
swarm robotic behaviours. The framework offers the ability
to integrate the built-in behaviours and create new ones.
They were designed to be compatible with resource-limited
hardware robotic platforms, which consisted only of a virtual
pheromone-based communication system with IR sensors to
measure the distance and the angles of incoming signals. The
built-in behaviours were categorized into preliminary, pair,
cluster, and global behaviours. The framework presented a
wide range from preliminary behaviours such as moveFor-
ward, moveStop, and angularTurn to global-level behaviours
such as aggregate and pattern formation. The tests were carried
out on a custom-built simulation platform in Java for random
movement with obstacle avoidance, object finding behaviour
and aggregation behaviour.

The Actor-based programming framework [12], another re-
search that follows a bottom-up design approach, offers several
benefits. It allows task developers to model cooperative tasks



explicitly without getting caught up in the complexities of
detailed robotic algorithms or brands. This framework reduces
the workload on robotic algorithm developers by providing
common functionalities. It has introduced the concept of
an “Actor”, representing high-level virtualization for robot
platforms, enabling the management of collective behaviours,
as each Actor maintains a data structure and is associated
with different plug-in groups. A domain-specific language
(DSL) is proposed for composing Actor-based tasks. This
relieves task developers from the unnecessary details of indi-
vidual robot manipulation, enabling them to focus on complex
swarm robotic task coordination strategies. The framework
is implemented in C++ and is validated through quantitative
and qualitative methods, including simulations and in-field
tests. While the Actor-based programming framework does not
support visual programming for swarm robots, their objective
of allowing the developers to focus on programming complex
swarm behaviours without delving into low-level complexities
aligns with our research goal.

While each tool or framework has its specific features and
focuses, some common challenges or limitations that can be
encountered in swarm intelligence-related tools. Some tools
may focus on specific swarm intelligence algorithms, such as
particle swarm optimization (PSO) or ant colony optimization
(ACO) while neglecting other techniques. This limitation can
restrict the range of problems addressed using the tool. As the
complexity of the problem or the size of the swarm increases,
the scalability and performance of the tools can become a chal-
lenge. The efficiency of the algorithms and the computational
requirements may vary, impacting the practicality of using the
tools for large-scale applications. While many tools provide
default settings and parameters for the algorithms, the ability
to easily customize and fine-tune the algorithms may vary.
Some tools may have limited flexibility in adjusting algorith-
mic parameters or incorporating domain-specific knowledge.
Integrating swarm intelligence tools with existing systems or
frameworks can be challenging. Compatibility issues, depen-
dencies, or lack of interoperability with other libraries or
platforms may require additional effort or workarounds. Some
tools, such as swarm robotics or blockchain-based decision-
making, are designed with a specific domain or application
in mind. While this specialization can be advantageous for
specific use cases, it may limit the applicability of the tools in
broader swarm intelligence contexts. Therefore, considering
these common challenges is essential while evaluating and
selecting a tool for your specific needs.

B. Swarm Behavioural Algorithms

When considering the studies related to swarm behavioural
algorithms, one of such behaviours we encountered was the
flocking behavioural algorithm. Flocks can be described as
aggregations of many individuals which move together with
cohesion, flexibility, and alignment. This phenomenon is ob-
served in various species in nature, particularly among birds,
fish, and certain insects.

In this area of research, Craig Reynolds [5] was amongst the
first to abstract this flocking behaviour to a swarm of simulated
birds which he called Boids. His implementation comprised
three main behaviours: collision avoidance, flock centring, and
velocity/heading matching. As a result, several approaches to
adapt this behaviour to a robotic swarm have been made. Usu-
ally, these approaches needed stable communication channels
between robots where heading data of its own is known, and
headings or velocities of nearby robots or predefined leaders
are communicated among robots which do not truly replicate
the nature of a real flock.

Therefore, Christoph Moeslinger [4] and his colleagues
came up with a low-end and easy-to-implement flocking algo-
rithm which suits limited computational power and minimalist
swarm robot equipment where it doesn’t require communi-
cation, memory or global information. Their approach was
discretising the robots’ sensor fields into sectors and using
different distance thresholds for attraction and repulsion in
these sectors to achieve emergent alignment. The algorithm
required four circumferential IR sensors and three discrete
reactions in movement; move straight, turn left or turn right.
The basic rules applied are collision avoidance, robot sepa-
ration, flock cohesion, and emergent alignment. Tests were
done for analysing flocking and aggregation capabilities using
a simulator based on the multi-agent programming language
NetLogo. The results showcased that both the mobility of a
flock of swarm robots and aggregation time depended on the
size of the flock, and the algorithm seemed to work well with
comparatively small swarms.

Earlier approaches to pattern formation in swarm robotics
have primarily focused on employing virtual forces and global
knowledge to coordinate the robots and generate predefined
patterns. However, these approaches often require complex
algorithms and centralized control systems, which limit their
adaptability and scalability. In contrast, the approach proposed
by Mehmet Serdar Güzel and his team [8] introduces a new
adaptive algorithm for pattern formation in swarm robotics.
This algorithm allows the swarm to form a circle pattern
autonomously, regardless of size, while providing collision
prevention and adaptability in cluttered environments. The
algorithm is integrated into a decentralized navigation system
and has been successfully tested in a 3-D robotic simulator.
The results of the experiments are encouraging, demonstrating
the effectiveness of this algorithm and motivating further
research in this direction.

The research paper [9] focuses on the foraging behaviour
in swarm robotics and proposes different strategies for item
searching. The study reviews the literature on foraging al-
gorithms, mathematical models, and computer simulations.
The researchers developed a state transition diagram, a log-
ical flow chart, and algorithms for various item-searching
strategies, including the expanding square, parallel sweep,
and divider approaches. These strategies were simulated using
the player/stage open-source simulation software. Statistical
analysis was conducted to compare the strategies and identify
the most effective ones. The results suggest that the parallel



sweep with divider policy yielded the best item detection time
among the tested strategies.

The paper [15] introduces the Repulsion-Attraction (Rep-
Att) algorithm for swarm robotics in the context of foraging
tasks. Inspired by swarm intelligence observed in natural
swarms, the algorithm utilizes direct communication among
robots through sound signals. The algorithm incorporates
repulsion signals to drive robots away from the nest in search
of targets and attraction signals to invite other robots to exploit
discovered target clusters. Simulation results demonstrate the
effectiveness of the Rep-Att algorithm in improving foraging
efficiency compared to random walk and repeller algorithms.
Additionally, the paper presents experiments on implementing
the communication model in hardware platforms, validating
its functionality with realistic and noisy sound models. The
algorithm’s simplicity, low-cost hardware requirements, and
utilization of bio-inspired navigation make it a promising
approach for swarm foraging applications.

Dynamic task allocation, another important swarm be-
haviour, refers to the process of assigning tasks among individ-
ual robots in a swarm dynamically and adaptively. Wonki Lee
and DaeEun Kim have proposed an algorithm [13] to handle
dynamic task allocation in the object foraging task based on
the decentralized strategy of the response threshold model
without inter-robot communication. Each robot can select its
task by regulating the response threshold value, which is
updated based on the robot’s local environment. The results
have shown that the system can stochastically converge to
the equilibrium of the desired task distribution and adapt the
swarm to changes in the swarm members or task demands.

Another research study [14] focuses on the problem of task
allocation in robotic systems. The paper explores different
ways to solve this problem, mainly using evolutionary op-
timization algorithms. They suggest breaking down complex
tasks into simpler ones and coordinating their execution as
a solution. The paper highlights the importance of adapting
task allocation to changes in the environment and swarm
performance instead of using a centralized approach. They
introduce various algorithms, classified based on their be-
havioural, market-based, and bio-inspired approaches. The
algorithm proposed in the paper is a distributed task allocation
algorithm based on Particle Swarm Optimization (PSO). It
improves the allocation process by continuously updating the
positions and velocities of the robots in the search space.
The algorithm is designed to be resource-efficient and has
been tested on a group of ELISA III robots. The paper
presents experimental results and concludes that the proposed
algorithm effectively achieves task allocation that meets the
desired requirements. This demonstrates its effectiveness and
efficiency in real-world situations.

REFERENCES

[1] Dassanayaka, M., Bandara, T., Adikari, N., Nawinne, I., & Ragel, R.
(2020, July). A Programming Framework for Robot Swarms. In 2020
Moratuwa Engineering Research Conference (MERCon) (pp. 578-583).
IEEE.

[2] Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm
robotics: A review from the swarm engineering perspective. Swarm
Intelligence, 7(1), 1–41.

[3] Navarro, I., & Matı́a, F. (2013). An Introduction to Swarm Robotics.
ISRN Robotics, 2013, 1–10.

[4] Moeslinger, C., Schmickl, T., & Crailsheim, K. (n.d.). LNAI 5778 - A
Minimalist Flocking Algorithm for Swarm Robots.

[5] Reynolds, C.W. (1987). Flocks, herds, and schools. Computer Graphics,
21(4), 25–34.

[6] Madhushanka, H. M. K., & Perera, A. L. H. E. (2023). Swarm Intelli-
gence Programming Framework Literature Review. February.

[7] Pinciroli, C., Lee-Brown, A., & Beltrame, G. (2015). Buzz: An Exten-
sible Programming Language for Self-Organizing Heterogeneous Robot
Swarms. http://arxiv.org/abs/1507.05946.

[8] Güzel, M.S., Gezer, E.C., Ajabshir, V.B., & Bostancı, E. (Year not
specified). An Adaptive Pattern Formation Approach for Swarm Robots.

[9] Sakthivelmurugan, E., Senthilkumar, G., Prithiviraj, K.G., & Tinu De-
vraj, K.R. (Year not specified). Foraging behavior analysis of swarm
robotics system.

[10] Spears, W.M., Spears, D.F., Heil, R., Kerr, W., & Hettiarachchi, S.
(2005). An overview of physicomimetics. Lecture Notes in Computer
Science, 3342, 84–97.

[11] McLurkin, J., Kaelbling, L.P. (1999). Stupid Robot Tricks: A Behavior-
Based Distributed Algorithm Library for Programming Swarms of
Robots.

[12] Yi, W., Di, B., Li, R., Dai, H., Yi, X., Wang, Y., & Yang, X. (Year not
specified). An Actor-based Programming Framework for Swarm Robotic
Systems.

[13] Lee, W., & Kim, D.E. (2019). Adaptive approach to regulate task distri-
bution in swarm robotic systems. Swarm and Evolutionary Computation,
44, 1108–1118. https://doi.org/10.1016/j.swevo.2018.11.005

[14] Nedjah, N., De Macedo Mourelle, L. (2015). Pso-based distributed
algorithm for dynamic task allocation in a robotic swarm

[15] Obute, Simon O., Dogar, Mehmet R., Dogar, Mehmet R. (2019): Simple
Swarm Foraging Algorithm Based on Gradient Computation.


