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I. INTRODUCTION

In recent years, remote training has gained significant at-
tention since it offers the potential to bridge geographical
distances and allow individuals to improve their skills re-
motely. However, one critical challenge in remote training
lies in accurately tracking, analysing, and comparing complex
hand and finger movements in real time, essential for providing
precise feedback and facilitating skill development. Although
potential applications of this technology encompass a wide
range of fields, including music education, sports coaching,
sign language detection, virtual reality gaming, and physical
rehabilitation, this paper specifically focuses on applying flex-
ible sensor gloves in surgical training.

Traditionally, the assessment of surgical technical skills for
novice surgeons has relied on evaluations by expert surgeons.
There are some limitations when expert surgeons observe the
novice surgeon’s skills and give feedback since it is difficult
to have a direct line of sight and expert surgeons need to be
physically present.

This research proposal aims to address this challenge by
developing a cutting-edge solution as a flexible glove embed-
ded with nine 9-axis Inertial Measurement Units (IMUs). The
glove, equipped with sophisticated algorithms, will enable the
real-time capture, analysis, and wireless transmission of hand
movement data to an end device. A mobile application is used
to give real-time feedback to surgeons.

The outcomes of this research can potentially transform the
way training is conducted, transforming the remote learning
landscape and allowing individuals to reach new levels of skill
and proficiency.

II. LITERATURE REVIEW

In recent years, there has been growing interest in applying
flexible gloves for real-time tracking and analysis of hand
and finger movements in remote training. This has led to
significant advancements in sign language recognition, physi-
cal rehabilitation, and surgical training. In particular, sensor
gloves have emerged as a promising tool for tracking and
analysing the skills of novice surgeons in both open and
minimally invasive surgical procedures. These gloves can
provide automated assessments with the help of artificial
intelligence and machine learning algorithms. This literature
review explores the application of flexible sensor gloves in the
surgical field. It aims to critically analyse existing research
on this topic, discussing the tracking indicators, performance
analysis, human-machine interfacing, and statistical methods
used in analysing.

A. Advances in Flexible sensor Glove Technology

Research into augmented gloves can be divided into vision-
based and sensor-based approaches. Vision-based methods
depend on externally mounted cameras capturing the entire
hand, which poses challenges in interactions with objects
or cluttered environments. Consequently, camera-based tech-
niques are restricted to controlled environments and impose
physical constraints on immersive user experiences. Mounting
sensors directly onto the user’s hand removes the need for
direct line-of-sight and can improve reliability [2].

Sensor data gloves are electromechanical devices incorpo-
rated with a set of sensors, such as flex [3], optical, touch, tilt
and magnetic sensors. These sensors were utilised to gather
information on the finger tilt angle. However, many articles in
literature take advantage of the flex sensor to acquire finger
bend information. Motion tracking and hand orientation are



other data acquired by the sensor. Three-axis accelerometer,
six-axis inertial measurement unit (IMU) [4] and nine-axis
IMU [2][5] were used for hand motion detection or orientation.
The nine-axis IMU comprises a 3D accelerometer (ACC), 3D
gyroscope (GYRO) and 3D magnetometer, which can measure
acceleration, rate-of-turn and magnetic field, respectively.

TABLE I
SENSORS USED TO COLLECT DATA AND THE CORRESPONDING

REFERENCES

Sensors Advantages Disadvantages References
Inertial Mea-
surement
Units (IMU)

-High sample
rate

-Cumulative
error
-Wired to provide
power

[1][2][4][5]
[13][18][20]

Optical
markers

-Accuracy
-Robustness (No
dependence on
objects in its
environment)
-Large Range
-Wireless
position markers

-Requires line of
sight
-Optical markers
are relatively
high

[19]

Flex sensors -Low cost
-Easy to use
-Detects high
range of bending
angles

-Errors over time
due to changes in
sensor flexibility
- Limitation of
movement by
wiring

[3][4]

B. Applications of Flexible Sensor Gloves in Remote Training

Numerous applications are currently involved in gesture
recognition systems using sensor gloves, such as Sign Lan-
guage Recognition, substitutional computer interfaces, so-
cially assistive robotics, immersive gaming, virtual objects,
remote control, medicine-health care, gesture recognition of
hand/body language, etc.[6].

Among these applications, this paper specifically focuses
on applying flexible sensor gloves in surgical training. The
assessment of surgical technical skills are crucial for surgeons,
whether in open surgery or less invasive techniques like robot-
assisted laparoscopic surgery. Traditionally, the assessment
of surgical skills depends on subjective methods such as
direct observation and feedback from expert surgeons. This
is time-consuming, non-scalable and inconsistent. Therefore,
an automated system that can objectively identify the actual
skills level of a junior trainee is highly desirable. [9]

Internet of Things (IoT) has opened up new possibilities in
surgical training and assessment. IoT technologies enable the
integration of sensors into surgical settings, providing real-
time data that can be processed using artificial intelligence
and machine learning algorithms. This data-driven approach
is promising for enhancing surgical procedures in training and
professional practice [10].

Simulators have proven effective in enhancing surgeons’
skills outside the operating room (OR). However, their ap-
plicability is set back by the variability in requirements across
different surgical techniques. Minimally invasive surgery

(MIS), characterized by a limited workspace and restricted
hand movements with four degrees of freedom (DoFs) due
to fulcrum-mediated motion, has been more amenable to
simulator-based training. On the other hand, open surgery (OS)
involves a broader workspace and full DoF scenarios, making
simulators less commonly accepted in this setting [4][8].

Sensor data Gloves have proven effective in remote mon-
itoring and analysing hand movements in Open surgeries
[8][3][4].

C. Human-Machine Interfacing

To ensure device usability, a simple management interface
is useful to simplify the handling of the device. Real-time
recognition providing a real-time response to a specific task
in a recognition system is important in presenting immediate
feedback to the user.

The most common way of providing feedback in surgical
training is through visualisations. Trajectories, shown in 2D
or 3D with different colours indicating sub-movements, are
the most popular visualisation method. Other visualisations
include bar charts displaying scores for various indicators
and triangle radar charts depicting force parameters. However,
these visualisations are often static, and further research is
needed to explore how indicators evolve and determine the
optimal number of training sessions required for improvement
[10].

In control applications, gestures used for identification are
typically categorised as static or dynamic. Static gestures
are detected from a single image, while detecting gesture
trajectories involves analysing multiple-image sequences. The
Leap Motion device is commonly employed as a gesture-
sensing device, integrated with the Unity game engine, which
provides a suitable environment for setting up scenes and
conducting gesture detection [11].

TABLE II
VISUALIZATION TYPES OF FEEDBACK MECHANISMS

Mechanisms papers References
Trajectories 5 [12][14][15][16]
Bar charts 1 [16]

Radar chart 1 [17]

D. Tracking indicators and Performance analysis

In surgical tracking, indicators can be categorised into five
types: Position, Velocity, Acceleration, Orientation, and Force.
These indicators provide information about the tools used by
the surgeon and the movements of their body, with some
indicators derived from position values, such as velocity and
acceleration [10].

Regarding indicators related to the position, path length
is the most common indicator used. Regarding indicators
related to velocity, velocity values, understood as the path
travelled on each of the three Cartesian axes at a given
time (including mean, maximum value, minimum value or
standard deviation), is the most common indicator used. Other



indicators that have shown significant differences between the
levels of expertise are the number of sub-movements obtained
through velocity and spectral arc length obtained through the
Fourier spectrum of velocity, and idle duration. To analyse the
acceleration, changes in acceleration are the most common
indicator used. Among the indicators related to orientation
in surgical tracking, angular velocity, which measures the
rotation angle on each of the three axes within a specific
time period, is the most frequently employed indicator. Other
indicators that have shown significant results are Angular path
length, Orientation in three axes of rotation at different times.
When it comes to indicators related to forces in surgical
tracking, force values, which represent the force applied on
each of the three Cartesian axes at a specific time (including
metrics like maximum value, mean, median, deviation, root-
mean-square, or total-sum-of-square), are the most frequently
utilised indicators [10].

Fig. 1. Indicators with significant differences between levels of expertise
(novice surgeons, intermediate surgeons and advanced surgeons): a) position;
b) velocity; c) acceleration; d) orientation; and e) force. Those indicators that
can be used to distinguish between the three levels of expertise are in the center
of the corresponding triangle. Those indicators that can be used to distinguish
between two levels of expertise are on the side of the corresponding triangle.
Indicators for which no significant differences between levels of expertise
were found are not shown in the corresponding triangle.

E. Statistical methods and algorithms used in comparison and
analysis

The collected sensor data is processed using advanced
statistical methods and machine learning algorithms for the
objective and automated assessment of surgical technical
skills. This processing serves two main purposes: classification
of surgeons’ expertise levels and prediction of scores. The
data undergoes pre-processing steps such as feature extraction,
normalisation, and selection. These steps help collect relevant
data, reduce dimensionality, and eliminate noise. The focus
of the article is on the application of statistical methods
and algorithms rather than the specific details of data pre-
processing [10].

Regarding classification, SVM (Support Vector Ma-
chine)[4][2][6], neural networks [4][6], discriminant analysis
[6], Hidden Markov models [6], logistic regression, k-NN
[6], Naı̈ve Bayes, Random forest[5], and MLP(Multi-Layer
Perceptrons) [5] are the most used statistical methods and

algorithms used in classifying surgeon expertise levels. How-
ever, four main challenges can impact the accuracy of the
results obtained. Challenges include the quality of input data,
dataset dimensionality and feature selection, task dependency
requiring exercise standardisation, and the influence of surgeon
skills in training sets. At the same time, cross-validation may
not precisely reflect real scenarios [10].

F. Conclusion

By accurately tracking and analysing hand and finger move-
ments, sensor gloves enable real-time monitoring and feed-
back. The utilisation of machine learning algorithms allows
the processing of data collected by these gloves to provide
evaluations in surgical performances. However, challenges
such as data quality, feature selection, exercise standardisation,
and training set composition need to be addressed to improve
the accuracy and applicability of these systems.

Although many researchers have focused on comparing the
skill levels of surgeons in Minimally invasive surgery (MIS)
like laparoscopic surgery, only few have focused on comparing
the skills in Open surgery scenarios.

Another specific area that requires further attention is
providing real-time feedback to users. While sensor gloves
offer real-time monitoring capability, only a few articles have
focused on developing methods for delivering instantaneous
feedback to users. Exploring and developing techniques for
providing timely and meaningful feedback will contribute to
a more immersive and effective user experience.
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Muñoz-Merino, C.D. Kloos, “Objective and automated assessment of
surgical technical skills with IoT systems: A systematic literature
review,” Artif Intell Med., vol.112, 2021

[11] C. -C. Tsai, C. -C. Kuo and Y. -L. Chen, ”3D Hand Gesture Recognition
for Drone Control in Unity,” 2020 IEEE 16th International Conference
on Automation Science and Engineering (CASE), Hong Kong, China,
2020, pp. 985-988

[12] G. Forestier, F. Petitjean, P. Senin, F. Despinoy, P. Jannin, (2017,
June). “Discovering discriminative and interpretable patterns for surgical
motion analysis,” in Conference on Artificial Intelligence in Medicine in
Europe, Springer, Cham, (pp. 136-145).

[13] M. Levin, T. McKechnie, S. Khalid, T.P. Grantcharov, M. Goldenberg,
”Automated Methods of Technical Skill Assessment in Surgery: A
Systematic Review,” Journal of Surgical Education, vol. 76, issue 6,
pp. 1629-1639, 2019.

[14] H.I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.A. Muller, “Eval-
uating surgical skills from kinematic data using convolutional neural
networks,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention, Springer, Cham, 2018, pp. 214-
221.

[15] M. Uemura, M. Tomikawa, R. Kumashiro, T. Miao, R. Souzaki, S. Ieiri,
K. Ohuchida, A.T. Lefor, M. Hashizume, “Analysis of hand motion
differentiates expert and novice surgeons,” Journal of surgical research,
vol. 188, issue 1, pp. 8-13, 2014

[16] M. Uemura, M. Tomikawa, T. Miao, R. Souzaki, S. Ieiri, T. Akahoshi,
A.K. Lefor, M. Hashizume, “Feasibility of an AI-Based measure of
the hand motions of expert and novice surgeons,” Computational and
mathematical methods in medicine, pp.1-6, Mar 2018.

[17] T. Sugiyama, S. Lama, L.S. Gan, Y. Maddahi, K. Zareinia, G.R.
Sutherland, “Forces of tool-tissue interaction to assess surgical skill
level,” JAMA surgery, vol. 153, issue 3, pp. 234-242, 2017

[18] M. Ershad, R. Rege, A.M. Fey, “Meaningful assessment of robotic
surgical style using the wisdom of crowds,” International journal of
computer assisted radiology and surgery, vol. 13, issue 7, pp. 1037-
1048, Jul 2018.

[19] A.L.D. D’Angelo, D.N. Rutherford, R.D. Ray, S. Laufer, C. Kwan,
E.R. Cohen, A. Mason, C.M. Pugh, “Idle time: an underdeveloped
performance metric for assessing surgical skill,” The American Journal
of Surgery, vol.209, issue 4, pp. 645-651, 2015.

[20] X.A. Nguyen, D. Ljuhar, M. Pacilli, R.M. Nataraja, S. Chauhan,
“Surgical skill levels: Classification and analysis using deep neural
network model and motion signals,” Computer methods and programs
in biomedicine, vol. 177, pp. 1-8, Aug 2019.


