Long-reads Binning For Microbial Metagenomics Considering Multi-kingdoms

Group 11

Supervisors

Dr. Damayanthi Herath Senior Lecturer Department of Computer Engineering

Dr. Vijini Mallawaarachchi Postdoctoral Research Associate Flinders University, Australia

Team Members

E/18/030 Sathsarani

E/18/282 Nethmi

E/18/283 Jayathri

Outline

Domain and Background

Existing Tools for Metagenomic Binning

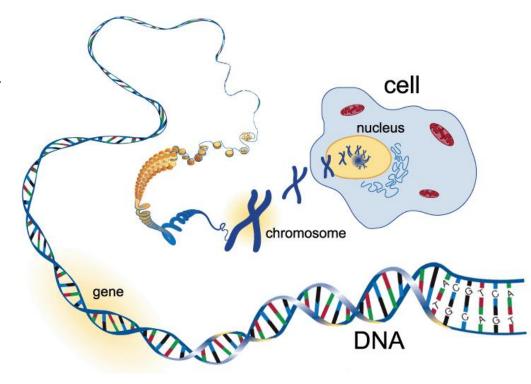
Identifying the Research Gap

Proposed Workflow

Impact

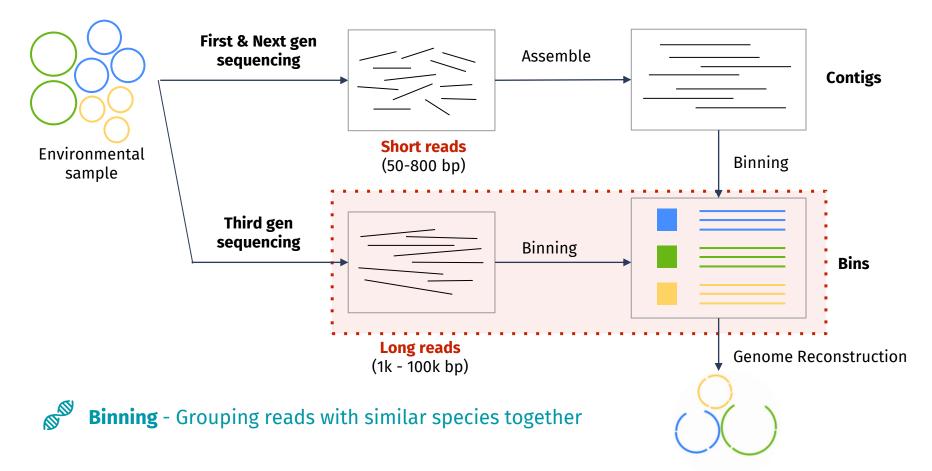
Use of AI Tools

Demonstration


Understanding Metagenomics

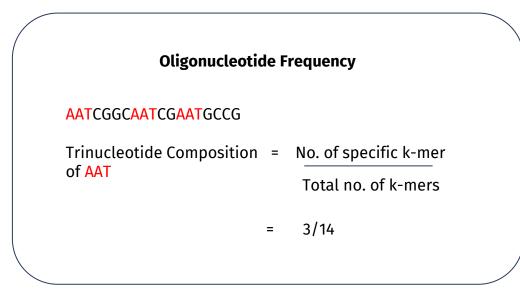
Genome - The complete set of genetic material present in an organism Ex:- Human genome, Bacterial genome

4 nucleotide bases:

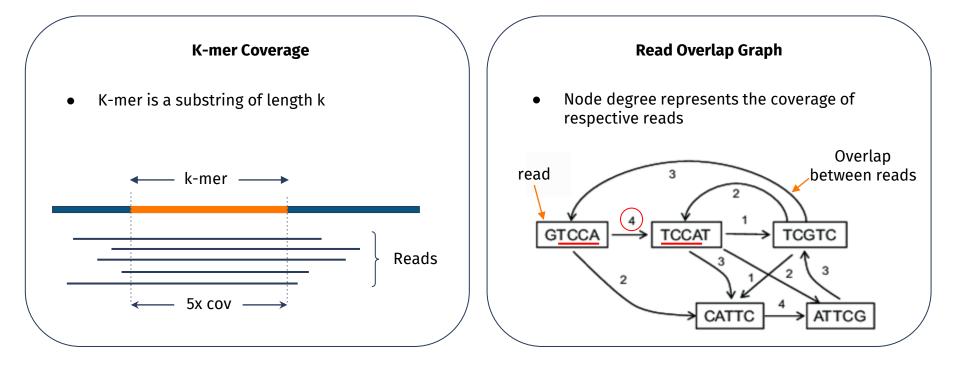

Adenine, Guanine, Cytosine, Thymine

DNA sequencing - Extracting the long strings of genetic material into readable lengths

...CCTTACTTATAATGCTCATGCTA...


Background

Binning in Metagenomics


Features considered to cluster the reads in to bins;

1) Composition - normalized frequency of short substrings of a particular read

Binning in Metagenomics

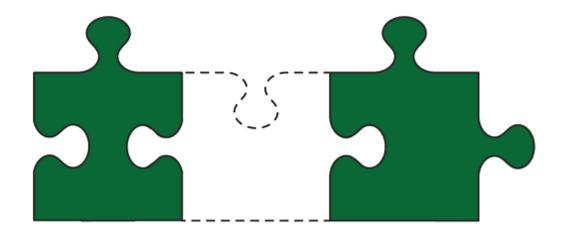
2) Coverage - number of reads that overlaps with a specific region in a reference genome

Existing Long-reads Binning Tools

Tool	Feature Extra	Clustering Algorithms	
	Composition	Coverage	
MetaBCC-LR	Trinucleotide frequency profiles	K-mer coverage histogram	DBSCAN (density based ML clustering algorithm)

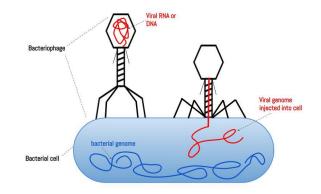
Wickramarachchi, A., Mallawaarachchi, V., Rajan, V., & Lin, Y. (2020). Metabcc-Ir: meta genomics b inning by c overage and c omposition for I ong r eads. Bioinformatics, 36(Supplement_1), i3-i11.

Existing Long-reads Binning Tools

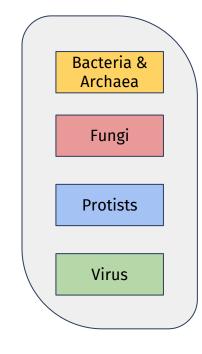

Tool	Feature Extra	Clustering Algorithms		
	Composition	Coverage	Clustering Algorithms	
MetaBCC-LR	Trinucleotide frequency profiles	K-mer coverage histogram	DBSCAN (density based ML clustering algorithm)	
LRBinner	Trinucleotide composition vector	k-mer coverage vector	Distance based statistical grouping technique	

Wickramarachchi, A., & Lin, Y. (2021). LRBinner: binning long reads in metagenomics datasets. In 21st International Workshop on Algorithms in Bioinformatics (WABI 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Existing Long-reads Binning Tools


Tool	Feature Extra	Clustering Algorithms		
	Composition	Coverage	Clustering Algorithms	
MetaBCC-LR	Trinucleotide frequency profiles	K-mer coverage histogram	DBSCAN (density based ML clustering algorithm)	
LRBinner	Trinucleotide composition vector	k-mer coverage vector	Distance based statistical grouping technique	
OBLR	Tetranucleotide frequency vector	Node degree of the Read overlap graph	HDBSCAN (density based hierarchical ML clustering algorithm)	

Wickramarachchi, A., & Lin, Y. (2022, May). Metagenomics binning of long reads using read-overlap graphs. In *RECOMB International Workshop on Comparative Genomics* (pp. 260-278). Cham: Springer International Publishing.


Bridging the Gap

Consideration of Multi-kingdom

Species of different kingdoms can present in the same sample.

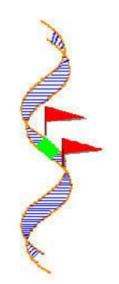
Ex: Bacteriophage viral Infection

Marker genes

A gene or DNA sequence with a known location on a chromosome that can be used to identify individuals or species

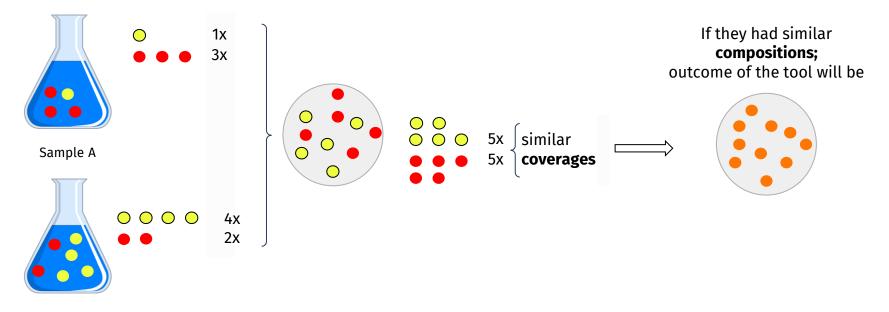
Single copy marker gene: marker genes that occur only once in almost every genome

Bacteria & Archaea

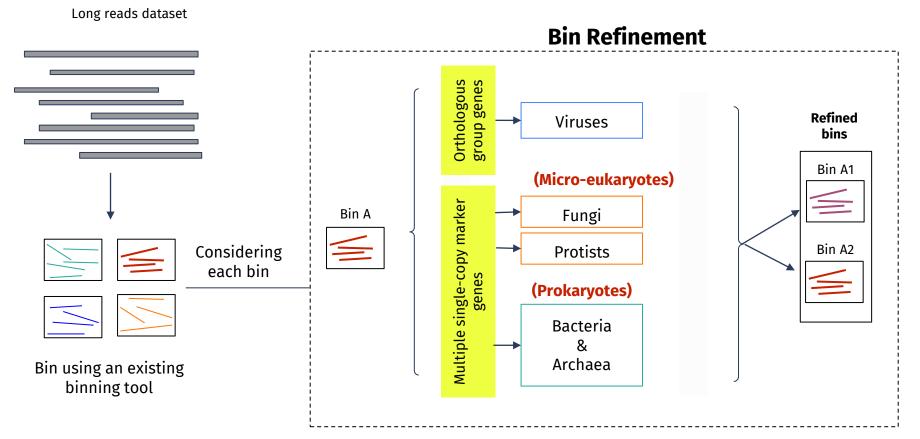

Fungi

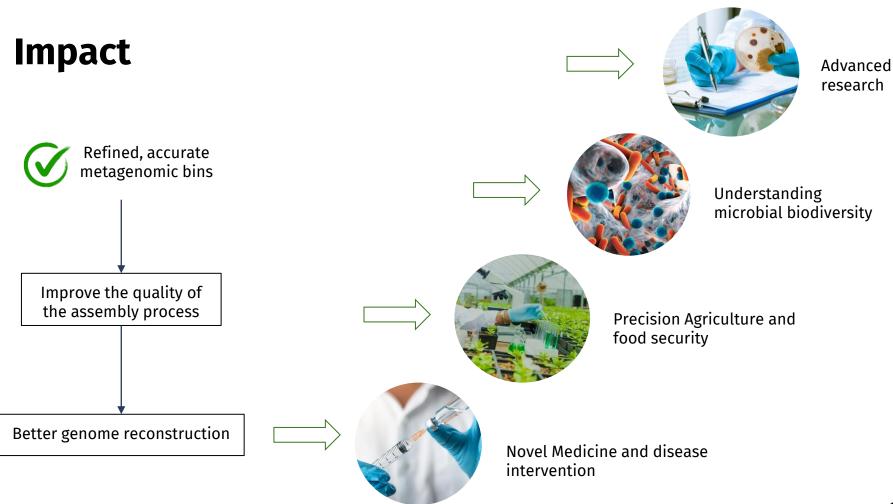
Protists

Single-copy marker genes


Viruses: Orthologous gene sequences specialized databases:

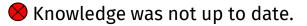
- VOG (for all viruses)
- PHROG (for proviruses)



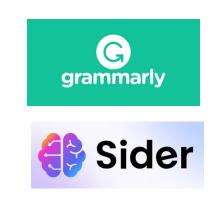

Consideration of Multiple Samples

★ Differential abundance: variation in abundance of different species across different samples

Proposed Workflow



Use of AI tools



Gather information on the domain and existing work.

Generating bias and inaccurate information.

To assist in the process of writing and to generate citations.

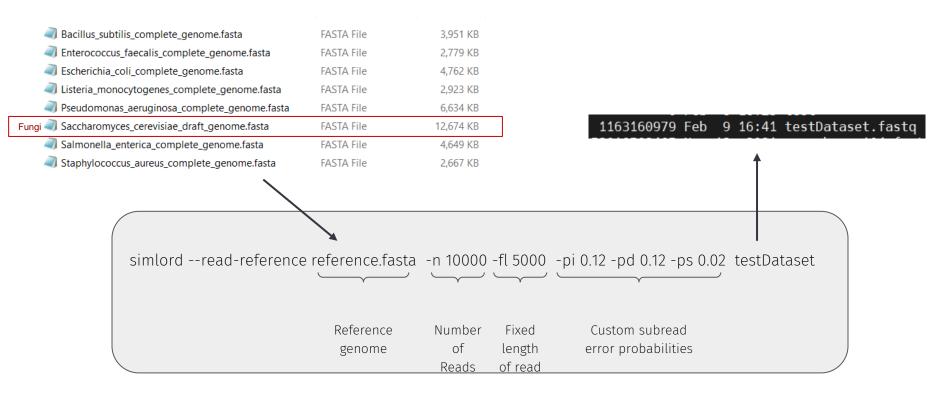
Limited understanding on the context.

Demonstration

Structure of the datasets

Fastq format

Line 1: Begins with @ followed by read ID

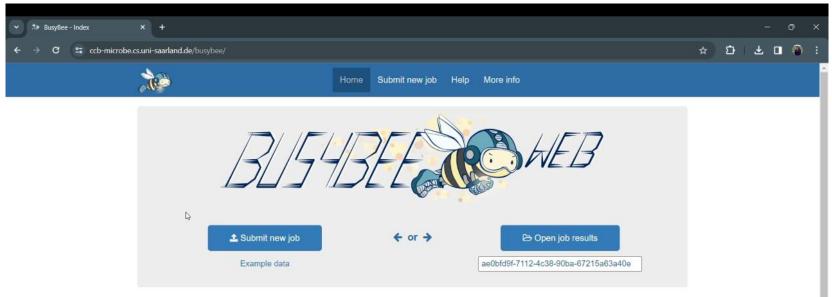

Line2: Nucleotide sequence

Line3: Begins with + and is often optional. It is the separator between sequence and the quality score

Line4: Quality scores corresponding to each base in the sequence

Fasta format• No quality score data

Simulating reads data


Running long-reads binning tools

- 1. BusyBee Web Web based tool
- 2. MetaBCC-LR

Command line based python tools

3. LRBinner

1) BusyBee Web

Purpose

The BusyBee webserver was developed to enable the convenient analysis of metagenomic data in the form of assembled contigs or long reads (PacBio or ONT). To this end, the webserver currently provides unsupervised (i.e., reference-independent) binning, binning quality assessment, functional annotation of antibiotic resistance genes, and taxonomic annotation. The only required input are sequences in FASTA-format and all analyses are performed automatically. Upon completion, the results are visualized, thereby enabling intuitive user inspection. Moreover, a dump of the results can be downloaded.

Availability

The results generated by the BusyBee webserver are available for 14 days upon job completion. Should you require your results to persist longer, please contact us. We might change this policy in the future depending on the availability of computational resources and server demand. Moreover, certain file size constraints are installed to assure the general availability of this webservice. If you require larger datasets to be run, please contact us.

Citation

Laczny, C. C., Kiefer, C., Galata, V., Fehlmann, T., Backes, C., & Keller, A. (2017). BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and

How to use it?

This website uses Matomo Analytics and cookies. For more information, please refer to the privacy notice for our websites, Learn more lagree

2) MetaBCC-LR

Step 1: Count K-mers

(metabcc-lr) e18030@ampere:/storage/scratch1/e18-4yp-multi-kingdom-binning/binningTools/MetaBCC-LR\$ python mbcclr --resume -r ../../dataset s/zymo_hmw_r941.fastq -o MetaBCC_output -e umap -c 25000 -bs 10 -bc 10 -k 4 2024-02-09 21:19:49,693 - INFO - Command mbcclr --resume -r ../../datasets/zymo_hmw_r941.fastq -o MetaBCC_output -e umap -c 25000 -bs 10 -b c 10 -k 4 2024-02-09 21:19:49,693 - INFO - Resuming the program from previous checkpoints 2024-02-09 21:19:49,693 - INFO - Counting K-mers INPUT FILE ../../datasets/zymo_hmw_r941.fastq OUTPUT FILE MetaBCC_output/profiles/3mers K SIZE 4 THREADS 8 Profile Size 136 Total 4-mers 256 Loaded Reads 8851918 2024-02-10 01:07:12,778 - INFO - Counting K-mers complete

Step 2: Count 15-mers

2024-02-10 01:07:13,253 - INFO - Counting 15-mers INPUT FILE ../../datasets/zymo_hmw_r941.fastq OUTPUT FILE MetaBCC_output/profiles/15mers-counts THREADS 8 Loaded Reads 8851918 WRITING TO FILE COMPLETED : Output at - MetaBCC_output/profiles/15mers-counts 2024-02-10 07:19:20,530 - INFO - Counting 15-mers complete

2) MetaBCC-LR

Step 3: Generate 15-mer profiles

2024-02-10 07:19:20,906 - INFO - Generating 15-mer profiles K-Mer file MetaBCC_output/profiles/15mers-counts LOADING KMERS TO RAM FINISHED LOADING KMERS TO RAM INPUT FILE ../../datasets/zymo_hmw_r941.fastq OUTPUT FILE MetaBCC_output/profiles/15mers THREADS 8 BIN WIDTH 10 BINS IN HIST 10 Loaded Reads 8851918 COMPLETED : Output at - MetaBCC_output/profiles/15mers 2024-02-10 10:37:23,247 - INFO - Generating 15-mer profiles complete

Step 4: Sampling reads

2024-02-10 10:37:23,342 - INFO - Sampling Reads 2024-02-10 11:43:33,794 - DEBUG - 3mer data shape (8851918, 136) 2024-02-10 11:43:33,805 - DEBUG - 15mer data shape (8851918, 10) 2024-02-10 11:43:33,805 - DEBUG - Sampling count 25000 2024-02-10 11:43:35,086 - INFO - Sampling reads complete

Step 5: Clustering using coverage and then composition (Small clusters are discarded)

2024-02-10	11:43:35,087	- INFO	- Binning sampled reads
2024-02-10	11:43:35,376	- DEBUG	- Clustering using coverage
2024-02-10	11:44:43,894	- DEBUG	- Identified number of coverage clusters - 1
2024-02-10	11:44:43,895	- DEBUG	- Clustering using composition
2024-02-10	11:44:43,895	- DEBUG	- Discarding small clusters (< 500 reads in the sampled set)
2024-02-10	11:46:38,201	- DEBUG	- Identified number of coverage and composition clusters - 4
2024-02-10	11:46:38,201	- DEBUG	- Discarding small clusters
2024-02-10	11:46:38,212	- INFO	- Binning sampled reads complete

Step 6: Predict read bins

2024-02-10 11:46:38,212 - INFO - Predict read bins 3 Mers MetaBCC_output/profiles/3mers 15 Mers MetaBCC_output/profiles/15mers Stats MetaBCC_output/misc/cluster-stats.txt Threads 8 Bins size = 3 2024-02-10 11:52:05,026 - INFO - Predict read bins complete 2024-02-10 11:52:05,026 - INFO - Program Finished!. Please find the output in MetaBCC_output/final.txt

3) LRBinner

Step 1: Counting the reads

2024-02-10 09:04:41,009 - INF0 - Command lrbinner.py reads -r ./../../datasets/zymo_hmw_r941.fastq -bc 10 -bs 32 -o ./../results/lrb_result --resume --cuda -mbs 5000 --ae-dims 4 --ae-epochs 200 -bit 0 -t 32 2024-02-10 09:04:41,021 - INF0 - CUDA found in system 2024-02-10 09:04:41,022 - INF0 - Resuming the program from previous checkpoints 2024-02-10 09:04:41,022 - INF0 - Counting k-mers INPUT FILE ./../../datasets/zymo_hmw_r941.fastq 0UTPUT FILE ./../results/lrb_result/profiles/com_profs K_SIZE 3 THREADS 32 Profile Size 32 Total 3-mers 64 Loaded Reads 8851918

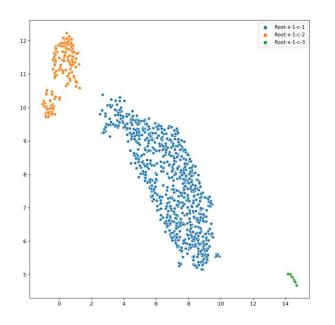
Step 2: Counting k-mers (k=3) and 15-mers

3) LRBinner

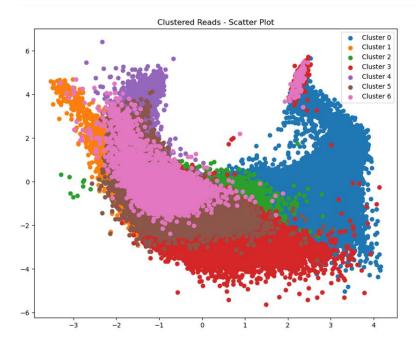
Step 3: Training the VAE

2024-02-10 12:07:01,872 - INFO - Profiles saving as numpy arrays	
2024-02-10 12:10:50,337 - INFO - Profiles saving as numpy arrays comple	ete
2024-02-10 12:10:50,353 - INFO - VAE training information	
2024-02-10 12:10:50,353 - INFO - Dimensions 4	
2024-02-10 12:10:50,354 - INFO - Hidden Layers [128, 128]	
2024-02-10 12:10:50,354 - INFO - Epochs 200	
Training VAE: 45%	90/200 [2:25:10<1:43:39, 56.54s/it

Step 4: Clustering the reads


Training VAE: 100%	200/200 [3:52:32<00:00, 69.76s/it]
2024-02-10 16:04:42,895 - INFO - VAE training complete	
2024-02-10 16:04:42,991 - INFO - Clustering algorithm running	
	1280/1280 [00:02<00:00, 516.68it/s]
2024-02-10 16:06:47,957 - INFO - Detected 9 clusters	
2024-02-10 16:06:48,678 - INFO - Detected 7 clusters with more than 5000 points	
2024-02-10 16:06:48,678 - INFO - Building profiles	
2024-02-10 16:08:47,412 - INFO - Binning unclassified reads	
	6062/6062 [00:01<00:00, 5627.41it/s]
2024-02-10 16:08:48,490 - INFO - Binning complete with 7 bins	

Performance comparison


ΤοοΙ	Result bin count	Time Evaluation criteria		n criteria		
		consumed (Hours)	Precision	Recall	F1-score	ARI
MetaBCC-LR	3	1.07	47.52	92.23	62.73	28.29
LRBinner	7	4	67.74	94.17	78.8	63.64

Cluster Images

MetaBCC-LR

LRBinner

Thank You!

Q & A