
A Review of the Advancements in Long-Read
Metagenomic Binning Over the Years

1st Nethmi Ranasinghe
Department of Computer Engineering

University of Peradeniya
Sri Lanka

e18282@eng.pdn.ac.lk

2nd Sathsarani Aththanayaka
Department of Computer Engineering

University of Peradeniya
Sri Lanka

e18030@eng.pdn.ac.lk

3rd Jayathri Ranasinghe
Department of Computer Engineering

University of Peradeniya
Sri Lanka

e18283@eng.pdn.ac.lk

4th Dr. Damayanthi Herath
Department of Computer Engineering

University of Peradeniya
Sri Lanka

damayanthiherath@eng.pdn.ac.lk

5th Dr. Vijini Mallawarachchi
Bioinformatics

Flinders University
Australia

vijini.mallawaarachchi@flinders.edu.au

Abstract—The study of microbial communities has undergone
significant advancements with the advent of long-read sequencing
which offered significant improvements when compared to short-
read sequencing. In recent years, a multitude of long-read
binning tools has emerged, categorizing themselves as either
reference-based or reference-free. Notably, reference-free binning
has gained popularity due to its capacity to discover novel species.
These long reads binning tools utilize different unsupervised
learning approaches, using coverage and composition features
of long reads. This review intends to showcase various long-
read binning tools by emphasizing their distinctive features and
the methodologies employed in each tool, including the binning
or clustering algorithms utilized. Additionally, we will conduct
a comprehensive comparison of the tools by examining their
performance with specific datasets. The discussion extends to
the role of refiners in enhancing binning accuracy. Overall, the
paper outlines current findings and proposes directions for future
research in this dynamic field.

Index Terms—Metagenomics binning, Long reads, Machine
learning, Clustering, Bin Refiners

I. INTRODUCTION

Microorganisms live in diverse environments across the
Earth, playing crucial roles in human health, agriculture,
food production, climate changes, and various other processes
[1]. Every living organism is constructed from tiny units
called cells which serve two crucial purposes: structure and
function. Within the nucleus of each cell lies the genome,
a complete blueprint containing the instructions for building
and maintaining the entire organism, including its unique
characteristics and behaviors. This blueprint is housed within
thin, thread-like structures known as chromosomes, which are
composed of DNA and proteins. DNA, the molecule carrying
the genetic instructions, takes the form of a double helix,
two long strands twisted together. It is made up of repeating
units called nucleotides, each labeled with a specific letter:
A(Adenine), C(Cytosine), G(Guanine), or T(Thymine). Genes,
the fundamental units of heredity, are segments of DNA that

contain the instructions for building proteins or functional
RNA molecules. They act as messengers, passing on traits
from one generation to the next, ensuring the continuity of
life [2].

Metagenomics involves studying the genetic material of
microorganisms directly from their natural environment, such
as soil, the gut, the ocean, and more. This approach eliminates
the necessity for laboratory culturing which can introduce
biases in the culturing process. Also, it leads to the discovery
of vast new lineages of microbial life [3].

First and next-generation sequencing(e.g. Illumina) tech-
nologies produce short reads whereas it is necessary to assem-
ble these short reads into contigs that have richer information
for binning (e.g.CoMet [4], MetaCOAG [5], MetaBAT [6],
BM3C3 [7], VAMB [8]). However, short reads encounter
challenges when dealing with repeated or similar sequences
in the DNA, making it harder to assemble a complete and
accurate representation of the genome [9].

Third-generation sequencing technologies such as Pacific
Bioscience (PacBio) [10] and Oxford Nanopore (ONT) entered
the spotlight by introducing long reads which are much
longer than short reads(less than 10kbp). This increased length
eliminates the need for contigs.

Metagenomic binning is an important area of metagenomic
studies that facilitates the grouping of sequences into tax-
onomic groups to reconstruct microbial genomes. Mainly
there are two methods in binning; 1) Reference-based (super-
vised) binning and 2) Reference-free (unsupervised) binning.
Reference-based binning(e.g. Megan-LR [11], Kraken [12],
Kaiju [9]) adopts a way of binning that compares similarities
of sequences with respect to a reference database of the known
genome. However, a drawback of this method is the limited
availability of reference databases [13].

Conversely, reference-free binning(e.g. MetaBCC-LR [14],
LRBinner [15], OBLR [16]) does not rely on a reference
database. Instead, it uses computational methods and tries to



group reads based on read qualities so that reads with the same
species are clustered together. This approach is particularly
well-suited for the identification of novel or rare species.

However, directly applying contig binning tools to classify
long reads proved unfeasible, primarily due to the absence of
coverage information for individual long reads. Additionally,
raw long-read datasets are more extensive in size compared
to the typical datasets containing assembled contigs [15].
Recognizing these limitations, researchers have turned their
attention to developing tailored strategies to address the unique
characteristics of long reads.

II. LONG-READS BINNING TOOLS

A. Overview

In the literature around 2017, a significant surge was noted
in the creation of specialized tools designed for the binning of
long reads. Among these, Megan-LR [11] stands out as one
of the earliest tools, employing a reference database. Megan-
LR utilizes a protein-alignment-based approach and introduces
two algorithms; one for taxonomic binning (based on Lowest
Common Ancestor) and another for functional binning (based
on an Interval-tree algorithm).

Two other noteworthy reference-independent tools,
MetaProb [17] and BusyBee Web [18], significantly
contributed to the domain of unsupervised metagenomic
binning. BusyBee Web, in particular, includes a web-based
interface, offering additional visual insights into the binning
process. On the other hand, MetaProb introduced a novel
approach called probabilistic sequence signature, which
proved to be a notable advancement in the field. However,
despite their respective strengths, both MetaProb and BusyBee
Web faced challenges related to scalability as input dataset
sizes increased, impeding their ability to bin entire datasets
in a single iteration.

To address these scalability issues, MetaBCC-LR [14]
was introduced, featuring a novel approach to represent the
abundance of long reads. It surpassed the limitations of its
predecessors, which solely relied on the composition fea-
ture, thereby achieving higher accuracy. Subsequently, more
advanced tools, such as LRBinner [15], OBLR [16], and
SemiBin2 [19], emerged. These tools employed supervised
learning techniques such as neural networks, to improve the
accuracy and efficiency of the overall process which will be
in-depth discussed as we progress through the review.

It is important to mention that the landscape of long-
read metagenomic binning tools remains relatively limited,
reflecting the novelty of this technology in the current world.

B. Read features and feature extraction strategies

In the context of the aforementioned reference-free binning
tools, the majority employ composition and coverage as the
read features for the binning process. Composition is the
relative abundance of distinct short sequences called oligonu-
cleotides within the reads. This is observed to be conserved
within a given species and distinct between species [20],
[21] Simultaneously, coverage, representing the count of reads

covering a specific region of an underlying genome, is crucial
in metagenomic binning. Long reads from the same species
typically exhibit similar coverages [8], [14]. These features
should be represented as numerical feature vectors to facilitate
computational analyses.

The commonly used method for determining coverage fea-
tures involves k-mer coverage histograms, often with a rela-
tively large value for k. Notably, MetaBCC-LR and LRBinner
employ 15-mers to generate coverage histograms for individ-
ual reads. While the k-mer-based approach yields promising
results in long-read binning, it is susceptible to unreliable
coverage estimation for individual long reads and exhibits
poor sensitivity for low-abundance species due to imbalanced
clusters [15].

In response to these limitations, the latest tool, OBLR,
adopts an alternative approach with read overlap graphs to es-
timate read coverages, resulting in improved binning outcomes
with elevated accuracy. In this approach, the node degree is
used to estimate the coverage of the corresponding read [16].

The computation of the composition feature is executed
through the analysis of oligonucleotide frequency profiles
in all three tools. Specifically, MetaBCC-LR and LRBinner
utilize trinucleotide frequency vectors, while OBLR employs
tetranucleotide frequency vectors for each read.

Although MetaBCC-LR and LRBinner share a common
methodology for computing their feature vectors, the main
difference lies in their approach to the binning process.
MetaBCC-LR utilizes the coverage information of reads to
initially cluster them, followed by a secondary binning process
using composition information. Notably, only a subset of reads
from the entire dataset is employed for this procedure. Toward
the end, statistical models are crafted for each identified bin
to cluster the remaining reads [14].

In contrast, LRBinner simultaneously computes compo-
sition and coverage information for the entire dataset and
merges them through a variational autoencoder. This innova-
tive approach addresses challenges faced by MetaBCC-LR,
especially in accurately binning species with non-uniform
composition or coverage and avoiding the misclassification of
species with low abundance as non-genomic. Furthermore, the
overall binning accuracy is enhanced as LRBinner eliminates
the need to subsample large datasets [15].

Despite high accuracy levels, LRBinner still suffers from
the challenge of distinguishing long reads from similar regions
shared between different species as it does not support over-
lapped binning. Also when it comes to the process of assembly,
the possibility of introducing more fragmented assemblies is
stated as a potential limitation [15].

In the case of SemiBin2, tetramer frequencies and prepro-
cessed abundance values of each read are employed, passing
through a self-supervised deep learning model [19]. Here,
abundance serves as a feature similar to coverage, measured
using a tool called BEDTools [22].



C. Clustering algorithms

In reference-free binning tools, the methods employed for
clustering typically involve unsupervised machine learning-
based approaches.

It has been observed that these tools prefer density-based
clustering algorithms over traditional centroid-based clustering
methods such as k-means. Unlike traditional centroid-based
algorithms like k-means, which assume clusters to have well-
defined centers, these tools prefer density-based clustering due
to the arbitrary shapes and sparse regions of read clusters.

For instance, MetaBCC-LR employs DBSCAN, a density-
based clustering algorithm, to effectively group sampled reads.
This algorithm needs a user-tunable parameter (ϵ) to define the
maximum distance at which two points are considered to be
connected [23]. SemiBin2 uses an ensemble-based DBSCAN
approach with different ϵ values in each model. LRBinner
takes a different approach, utilizing its own distance-based
grouping algorithm, which uses the latent space generated
by the Variational Autoencoder. Lastly, OBLR utilizes HDB-
SCAN, a hierarchical density-based clustering algorithm [24],
to cluster reads in a more advanced manner.

Metagenomics samples are observed to have imbalanced
clusters as they consist of species with varying coverages. This
can lead to the well-known class imbalance problem when the
entire dataset is clustered at once [25]. Therefore, an important
step of clustering in the OBLR tool is its sub-sampling
strategy to address the above issue. It uses a probabilistic down
sampling approach which has resulted in clusters with similar
sizes and less isolated points when compared with uniform
sampling. After clustering the selected sample of reads using
the HDBSCAN, it uses inductive learning to effectively assign
bins to the remaining reads. Rather than using classical label
propagation techniques which are less scalable and inefficient
for large-scale graphs, it employs the GraphSAGE neural
network architecture [16].

TABLE I
A COMPARISON OF THE LONG-READ METAGENOMIC BINNING TOOLS

Tools Read features considered Clustering
Composition Coverage algorithms

MetaBCC-
LR [14]

Trinucleotide
frequency vector

15-mer coverage
histogram DBSCAN

LRBinner
[15]

Trinucleotide compo-
sition vector

15-mer coverage
vector

Distance-
based
clustering

OBLR
[16]

Tetranucleotide
frequency vector

Node degree of
the read overlap
graph

HDBSCAN

SemiBin2
[19] Tetramer frequency Estimated abun-

dance

Ensemble
based
DBSCAN

D. Binning performance comparison

In the comparison of accuracy for binning results against
MetaBCC-LR, LRBinner, and OBLR, the focus is primarily

on precision, recall, and F1-score and the number of bins pro-
duced across different datasets. The evaluation utilizes datasets
categorized into simulated data and real data. SimLoRD [26],
a read simulator for third-generation sequencing with a focus
on the Pacific Biosciences SMRT error model, is employed to
simulate four PacBio datasets. These datasets, named Sim-8,
Sim-20, Sim-50, and Sim-100, consist of 8, 20, 50, and 100
species, respectively, with an average read length of 5000 bp
[15], [16]. The real datasets used in the evaluation include
ZymoEVEN(Oxford Nanopore reads), SRR9202034 (PacBio
CCS reads), and SRX9569057 (PacBio-HiFi reads). These real
datasets are chosen for their known ground truth references
[15], [16]. According to the comparative evaluation done in the
OBLR paper, it is evident that OBLR exhibits better accuracy
in binning compared to the other two tools.

During the execution of these tools, input files can be pro-
vided in the FASTA or FASTQ format, and the output directory
will contain the final output files. These output files include
a text file containing read IDs and their corresponding bins,
along with log files and checkpoints. After the completion
of the binning procedure, the binned reads are assembled
using long-read assemblers such as wtdbg2 [27] and metaFlye
[?]. Notably, the prior binning procedure has significantly
reduced peak-memory usage. While LRBinner shows limited
improvement in CPU time after reads are binned, OBLR
exhibits more substantial improvement. It is challenging to
perform a direct comparison of CPU time values due to the
varied computing setups used in the experiments of these tools.

III. IMPROVED BINNING THROUGH BIN REFINERS

The performance of metagenomic binning tools has raised
concerns, particularly in handling complex microbial com-
munities, as their outcomes may not always be satisfactory.
Due to different algorithms or statistical models used in such
tools, inconsistencies can be seen in the binning results across
different binning tools. After the binning process, ensuring
that all sequences within an identified bin are exclusive to a
particular species and free of contamination from other species
is crucial to prevent misleading conclusions [29].

In that case, to enhance the precision of binned reads,
the use of bin refiners becomes essential. Notable examples
include Binning refiner [29], d2sbin [30], GraphBin [31],
UGMAGrefiner [32], and METAMVGL [33]. Many of these
refining tools rely on the additional information derived from
assembly graphs which is a prime element in contig binning.
Consequently, they are suitable for refining results obtained
from contig binning tools. However, the existing literature
does not provide sufficient information regarding bin refiners
specifically designed for long-read metagenomic binning tools.

IV. CONCLUSION AND FUTURE PERSPECTIVE

In conclusion, the emergence of long-read metagenomics
represents a significant step forward in genomic analysis, pro-
viding a more comprehensive view of microbial communities.
Despite being a recent advancement, a significant number
of long-read binning tools have been developed, with an



admirable level of accuracy. However, our literature search
revealed a lack of diversity among these tools compared to
their short-read counterparts. A notable reliance on composi-
tion and coverage as read features is shown across the majority
of existing long-read binning tools.

This observation calls for further exploration and innovation
in the identification of additional read features that could
enhance the accuracy and refine the results of long-read
binning tools. Additionally, we have observed that these tools
are not primarily designed with a focus on multi-kingdoms of
microorganisms. Exploring this domain more comprehensively
and seeking a more sophisticated approach to incorporate
kingdom-level information into the binning process could
potentially enhance the results.

Given the considerable size of long-read datasets, it is
also important to address efficiency concerns. Optimizing
computational efficiency in long-read binning tools is crucial
for handling such massive volumes of data generated by these
sequencing technologies.

Moreover, the advanced error correction mechanisms have
resulted in an accuracy of 99% in the long reads sequenced
data [34] showing the potential to do further enhancements in
the field.
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