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Abstract—This paper explores the captivating field of swarm
robotics, where multiple robots collaborate to achieve tasks
in decentralized and distributed manner. Inspired by natural
swarm behaviors, such as those observed in ants and bees,
swarm robotics aims to analyze emergent behaviors within
robot swarms, including aggregation, dispersion, and collective
movement. The focus here is on the exploration behavior of
swarm robotics in unknown environments. While swarm robotics
offers increased efficiency, reliability, and cost-effectiveness, im-
plementing distributed exploration poses challenges in coordi-
nation, communication, decision-making, and fault tolerance.
Nonetheless, advancements in robotics and artificial intelligence
pave the way for overcoming these challenges, leading to more
efficient and robust exploration missions.

Index Terms—Swarm robotics, Collaborative mapping, Swarm
intelligence

I. INTRODUCTION

Swarm robotics is a fascinating field of robotics that
involves multiple robots working together to achieve tasks in
a decentralized and distributed manner [1], [2]. It is inspired
by the collective behavior observed in natural swarms, such
as colonies of ants and hives of bees, where individual
entities work together towards a common goal [1], [3]. The
primary objective of swarm robotics is to investigate and
analyze the emergent collaborative and competitive behaviors
within a swarm of robots [4]. Over the past decades,
researchers have delved into various emergent behaviors,
including aggregation [5], dispersion [6], pattern formation
[7], collective movement [8] and task allocation [9]. Each
of these behaviors offers unique insights into how individual

robots can work together to achieve complex tasks without
centralized control or leadership. Here, we will specifically
concentrate on the exploration behavior of swarm robotics in
unknown environments.

Autonomous mobile robots, which have been at the
forefront of scientific research for numerous years, are
renowned for their wide-ranging applications. These
applications often require a pre-existing map of the
environment, a requirement that is integral to the successful
operation of these robots. The applications are diverse and
span several fields, including search and rescue missions,
cleaning tasks, and systems for intrusion detection or fault
identification. In the context of search and rescue missions,
for instance, these robots can navigate through hazardous
environments, reaching areas that are inaccessible or too
dangerous for humans [10]. For cleaning tasks, autonomous
robots can efficiently cover large areas, ensuring every nook
and corner is attended to. In security systems, these robots can
patrol and monitor specified areas, detecting any anomalies
or intrusions.

A map exploration system allows the robot to autonomously
create a representation of its surroundings. It’s like giving the
robot a sense of ‘sight’, enabling it to understand and navigate
its surroundings. However, this is not a trivial task. It can
be time-intensive, especially for a single robot, particularly in
large disaster areas with complex terrains. The challenge is
compounded by the dynamic nature of these environments,
where obstacles can appear or disappear, and paths can open



Fig. 1. Behavioral Algorithms related to Swarm Intelligence

or close [2]. Therefore, the development of efficient mapping
strategies is of utmost importance for the effective use of
autonomous mobile robots. These strategies should enable
the robots to quickly and accurately map their environment,
identify obstacles, and plan the best path to their destination.
They should also allow the robots to adapt to changes in the
environment and recover from any errors or failures.

In comparison to a single autonomous mobile robot,
a group or swarm of these robots can offer a multitude
of benefits in exploration tasks. These advantages include
enhanced efficiency, increased reliability, and robustness
[2], [3]. These benefits are achieved through some form
of collaboration among the team members, a characteristic
that is inherent to the concept of swarm robotics. Firstly,
due to this collaborative approach, a swarm of robots can
complete complex tasks more quickly than a single robot.
This is a significant advantage, particularly for missions
where time is of the essence. The swarm can cover more
ground, gather more data, and complete tasks more quickly,
making it an invaluable tool in these situations. Moreover, the
redundancy of robots in a swarm provides added flexibility.
This means that even if some robots malfunction or are
unable to complete their tasks, the overall mission can still
be completed. This is because other robots in the swarm can
take over the tasks of the malfunctioning robots, ensuring
the robustness of the system. This redundancy and flexibility
are crucial in dynamic and unpredictable environments,
where robots may face unforeseen challenges or obstacles.
Lastly, each robot in a swarm doesn’t need to be as costly or
sophisticated as a single robot performing the same task. This
makes swarm robotics a more economical choice for many
applications. Instead of investing in one highly sophisticated
and expensive robot, organizations can invest in a swarm
of simpler, more affordable robots. These robots, though

individually less capable, can collectively achieve the same,
if not better, results. This cost-effectiveness, combined with
the other benefits of swarm robotics, makes it an attractive
choice for a wide range of applications.

However, implementing this strategy in a distributed manner
presents several challenges. One of the primary difficulties is
the coordination and communication among the robots. Each
robot needs to share its findings and current status with the
rest of the swarm to ensure efficient exploration and avoid
redundant efforts. This requires a robust and reliable com-
munication system, which can be challenging to implement,
especially in environments where communication signals may
be weak or disrupted. Another challenge is the decision-
making process. In a distributed system, each robot needs
to make decisions based on its local information and the
information received from its peers. Designing an effective
decision-making algorithm that can handle uncertainties and
dynamically adapt to the changing environment is a complex
task. This requires sophisticated algorithms for fault detection,
isolation, and recovery [2].

II. RELATED WORK

In the past few decades, there’s been a surge of interest in
searching through different potentials of swarm robotics. In
this session, we’ll take a deep dive into existing research to
gain a clear picture of where this field stands today. Here,
our major goal is to pinpoint areas that need more attention,
spot emerging patterns, and highlight important theories.

Rothermich et al. [11] reported about a swarm of simple
robots to explore and map an unknown building. The paper
discussed the general issues and questions of swarm robotics,
such as when and how to use swarms, and how to evaluate



Fig. 2. Some famous mapping algorithms in swarm robotics

their performance. The paper also described the methods
and tools used for simulation and experimentation, and the
algorithms developed for collaborative localization, task
allocation, and mapping.

According to the SwarMap system [12], a swarm of
robots collaboratively built with a shared grid stored in
the cloud using Bayesian Filters. These robots exchanged
their localization estimates and sent updates to the grid,
resulting in enhanced localization and map quality compared
to using odometry alone. The experiments also showed that
larger swarm groups yield better maps due to improved
cooperative localization. Despite, another methodology that
allows each robot to update its belief about its position using
only local information was formulated by the same set of
people [13]. Here, it involved a leader robot equipped with
good localization capabilities, which would provide position
estimates to the rest of the swarm. This leader robot guided
the group by suggesting the direction to be followed, enabling
the robots to cooperatively localize themselves using an
approximate decentralized algorithm. They also maintained a
group cohesion during navigation by collectively estimating
their positions. The use of information from immediate
neighbors allowed each robot to perform localization
effectively and collective motion strategies played a crucial
role in achieving accurate and reliable cooperative localization.

Zhang et al. [14] used a fully decentralized approach with
an occupancy grid map and four states to represent obstacles,
unexplored areas, free spaces, and frontiers. The exploration
strategy was based on frontiers, which were the boundaries
between explored and unexplored areas. The robots were
repeatedly detecting these frontiers and were moving towards
them until there were no more frontiers, and consequently,
no more unknown regions. At each time step, each robot
broadcasted its own position and local map, integrating the
information received from other robots into its local map.

Abu-Aisheh et al. [15] introduced the Atlas Algorithm,
a novel approach for sparse swarm robot exploration and

mapping. However, it may not be suitable for decentralized
systems, as it was relied on a centralized controller to direct
robots in systematic exploration. Atlas would ensure mapping
completion even with just a single robot. This was achieved
through a systematic exploration controlled by a central con-
troller, which can direct robots to unexplored areas, focusing
on frontier cells rather than frontier robots. This approach al-
lowed the frontier to expand away from the starting point, with
robots making circular movements to explore. In obstacle-
rich environments, the swarm can divide into subgroups for
efficient navigation.

Atlas was evaluated against algorithms such as
Ramaithithima, random walk, and ballistic walk. Here, metrics
like exploration time, cost, efficiency, map completeness,
and quality were used for comparison. Results demonstrated
that, Atlas was superior in exploration speed and map
completeness. Also, Atlas was having lower exploration
cost and higher efficiency with compared to the alternatives.
Overall, while Atlas presents a comprehensive exploration and
mapping solution for centralized systems, our search continues
for a decentralized approach that aligns with our objectives.

A system with comprehensive explanations on collaborative
mapping and navigation algorithms was formulated by
Arvanitakis et al. [16] where each robot in the swarm was
equipped with a limited field of view, a limited-range finder,
and a magnetometer to infer its orientation. The robots were
assigned fixed stationary targets. They initially explored
towards their target areas and then were guided towards their
targets. The robots exchanged their maps in a collaborative
manner during the exploration.

Dieter et al. [17] introduced a distributed, multi-robot
mapping and exploration approach that can handle unknown
initial locations in limited communicating environments. They
were able to tackle the challenges of coordinating robots
without knowledge of their relative locations, integrating
their data into consistent maps. They introduced a decision-
base coordination technique to balance exploration and
location verification, along with a Bayesian map merging



Fig. 3. Simultaneous Localization and Mapping approaches

technique for estimating map overlaps. Here, the robots
were exploring unknown areas with verifying hypotheses,
using a shared map that updates when robots detect each other.

Previous approaches mainly relied on random motion
models, neglecting prior information in the map but Rogers
et al. [18] focused on the challenge of constructing an
occupancy grid map in an unknown environment using a
swarm of resource-constrained robots with limited sensing
capabilities. The proposed strategy introduced a collaborative
exploration approach, dividing the swarm into landmark robots
and mapper robots (the same strategy used in [12], [13]
papers), where the former guide the latter to promising areas
to collect proximity measurements for map incorporation. The
positions of the landmark robots were optimized to maximize
new information while adhering to connectivity constraints,
effectively decoupling the problem of directing the swarm
from the mapping task. Extensive simulated experiments
validated the performance, improves exploration efficiency
and ensures that new information is maximized, leading to
more effective mapping.

In addition to the above explained theories and algorithms
and also to get better understanding on these subjects, the
Figure 2 shows an overview of mapping algorithms in swarm
robotics, categorized in a systematic way. When talking
about other technologies related to robotics, Simultaneous
Localization and Mapping (SLAM) can be considered as a
pivotal element which can be used to create detailed maps of
the surrounding while concurrently determining the robot’s
position within them. Most of the SLAM based algorithms
integrate data through sensor fusion, with diverse ranges
such as cameras, LIDARs, or sonars, refining both the map
and localization estimates over time. Widely used systems
like Google’s Cartographer and ORB-SLAM exemplify the
versatility of SLAM in navigating and mapping unknown
environments with precision and robustness.

Figure 3 shows current approaches in SLAM, like direct
implementations of SLAM (specially, theories like odometry
and loop closure) and some derivatives from previously
mentioned algorithms (for example, occupancy grid approach
for mapping inside SLAM). Despite, most of these approaches
were primarily focused on non-swarm systems, which are
limited in scalability, adaptability. On the other hand, Swarm
SLAM can be considered as a promising approach that
leverage the decentralized nature of robot swarms to achieve
scalable, flexible, and fault-tolerant exploration and mapping.
For example, when considering broader applications like
in the agricultural domain, SLAM technology has been
employed for precision farming, crop monitoring, and
autonomous agricultural vehicles [19].

Collaborative SLAM (C-SLAM) also known as multi-robot
SLAM (MRSLAM), a key extension from the foundational
principles of swarm SLAM to heterogeneous robot teams
which had been used in the recent researches to test self-
driving cars and multi-robot systems. Lajoie et al. survey
[20] provides valuable insights into the challenges and
opportunities associated with collaborative mapping.

III. CONCLUSION AND FUTURE WORK

Swarm robotics can be considered as a core research
topic in the scope of multi-agent systems in engineering that
leverages the principles of self-organization, decentralized
control, and collective intelligence to create adaptive and
robust robotic systems capable of performing a wide range of
tasks in complex and dynamic environments.

In SLAM-based multi-robot systems, research gaps include
complex sensor usage, centralized mapping focus, limited real-
world testing, scalability issues with increasing robot numbers,
lack of robustness to dynamic environments, potential for
sensor fusion techniques, exploration of decentralized
communication protocols, and the need for standardized
benchmark datasets. These gaps offer opportunities for



exploring innovative solutions, advancing system capabilities,
and fostering collaboration across disciplines.

Our proposed solutions to these research gaps include
utilizing cost-effective robots equipped with simple sensors to
streamline operations. Integrating data from various sensors
enhances mapping and localization accuracy, optimizing
system performance. Implementing decentralized systems
with distributed mapping algorithms fosters collaboration
among robots, improving overall mapping efficiency. These
innovative approaches aim to address existing challenges and
propel advancements in multi-robot system capabilities.

However, SLAM with swarm robotics is still a relatively
new concept, lacking well-defined frameworks and results. It is
believed that Swarm SLAM can be particularly advantageous
in producing abstract maps and operating under time or cost
constraints. Future directions and potential advancements in
Swarm SLAM involve the development of advanced coop-
erative localization methods, integration of machine learning
techniques for improved mapping and localization.
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