
Research Project Proposal

Developing a Small Language Model (SLM)

for Financial Analysis

G31

E/19/131
Kasuni Hansachapa

Department of Computer Engineering

Faculty of Engineering

University of Peradeniya

2025

Research Project Proposal

Developing a Small Language Model (SLM)

for Financial Analysis

G31

E/19/131
Kasuni Hansachapa

Department of Computer Engineering

Faculty of Engineering

University of Peradeniya

2025

Abstract

This study develops a Small Language Model (SLM) which specifically processes
financial data at Lanka Education and Research Network (LEARN). The model is
trained on LEARN’s financial data, including five years of financial statements and
audit reports, to enhance decision-making and analysis.The SLM achieves both
efficiency and accuracy through several approaches including quantization techniques
along with pruning methods, knowledge distillation methods and retrieval-augmented
generation (RAG). The model's reliability depends on its adoption of QLoRA for
quick model optimization[28] and the inclusion of hallucination reduction
mechanisms.The system provides support to LEARN staff members performing
financial analysis in an accurate and reliable manner.

The implementation involves data preprocessing, model training, fine-tuning on
domain-specific documents, and integration into a user-accessible platform.The input
consists of structured and unstructured financial data, which the model processes to
generate insights and predictions. The financial data protection is ensured through
local hosting of the entire system on LEARN's server. This research outlines how
SLMs function as an efficient domain-specific solution against LLMs for financial use
cases with regulatory compliant and secure functionality that users can handle easily.

.

1

Table of Contents

Chapter 1 - Introduction..1

1.1 Introduction.. 1

1.2 Aims and objectives... 2

1.3 Solution Overview..2

1.4 Structure and Dissertation.. 5

1.5 Summary...5

Chapter 2 – Related works... 6

2.1 Introduction.. 6

2.2 SLM vs LLM..6

2.3 Approaches and Techniques in Previous Research.. 7

2.4 Summary of the lit review.. 7

2.5 Summary... 11

Chapter 3 – Proposed Approach.. 12

3.1 Introduction.. 12

3.2 Optimized RAG with LoRA for Smarter QA.. 12

3.3 Language model selection..13

3.4 Summary.. 13

Chapter 4 – Technology Adapted... 13

4.1 Introduction...13

4.2 Optimizing Small Language Models: Techniques and Technologies for Efficient
Development...13

4.3 Summary...15

Chapter 5 – Analysis and Design...16

5.1 Introduction.. 16

5.2 Data Collection...16

5.3 Data Preprocessing...17

5.4 System Development... 17

5.5 Experiments..18

5.6 Evaluation...19

5.7 Summary.. 20

Chapter 6 – Implementation...20

2

6.1 Introduction.. 20

6.2 Data Collection...20

6.3 Data Preprocessing...20

6.4 System Development... 21

6.5 Experiments..23

6.6 Evaluation...26

6.7 Summary.. 27

Chapter 7 – Discussion...27

References.. 28

3

List of Figures

Page

Figure 1.1– Data collection methods 3

Figure 3.1– High level architecture of proposed approach 19

Figure 5.1– System design for the proposed approach 23

Figure 6.1– High level overview of RAG implementation 30

Figure 6.2– High level overview of LoRA technique 31

4

List of Tables

Page

Table 1– Comparison between Small Language models(SLM)

& Large Language models(LLM) 13

Table 2– Hardware Requirements for language

models 16

Table 3– Model parameters count and capabilities of language

models 17

Table 4– Technology adopted and how they solve

the problems 21

Table 5– Summary of technologies for implementing the

proposed design 22

5

Chapter 1 - Introduction

1.1 Introduction

Large Language Models (LLMs) have transformed Natural Language Processing
(NLP) through their advanced capability to understand and reason alongside
generating human-level text throughout different general-domain operations LLMs
achieve high performance levels across various applications which include code
writing [3], math problem solving [4],dialogue [7], common sense reasoning [1], and
symbolic reasoning [11]. The ability of LLMs to support question-answering chatbots
and automation applications has turned into one of the main use cases over the past
several years[1].The financial industry traditionally uses Large Language Models
(LLMs) including GPT-3 and BloombergGPT to carry out financial
applications(automated decision making,risk assessments,fraud prevention and
financial forecasting etc) with their superior natural language processing (NLP)
features. However, the high computational cost, large-scale infrastructure
requirements, and risk of generating hallucinated outputs limit their practical use,
especially for organizations operating with constrained resources.

Small Language Models (SLMs) stand as a practical substitute that combines effective
resource utilization with domain-specific accuracy. The combination of quantization
with pruning together with knowledge distillation SLMs to match LLM performance
levels yet function using much reduced computing resources. Unlike general-purpose
LLMs, this SLM is fine-tuned on financial documents using QLoRA for efficient
training,and RAG enables with a strong emphasis on hallucination control
.Additionally, financial AI applications require high precision, as errors in predictions
can lead to serious financial consequences.Financial insights demand reliable results
which make data security and hallucination reduction necessary for achieving
them.Financial institutions are increasingly adopting AI, but regulatory frameworks
and ethical standards for their use are still developing.[2]

The research project creates a SLM prototype which targets the Lanka Education And
Research Network (LEARN) through training on five years of financial reports and
audit reports. This financial model supports LEARN staff in an accurate and reliable
manner. Security of the system rests on its deployment to LEARN local server
because this approach eliminates the data risks found in cloud-based AI models.

1

1.2 Aims and objectives

Aim : The main objective of this study investigates Small Language Modelling
(SLM) framework development for financial data modeling at LEARN while
prioritizing computational efficiency optimization and hallucination prevention
alongside security and reliability improvements.

Objectives

The specific objectives of this research are:

1. Optimization of Small Language Models for Financial Tasks: The project
will investigate optimization methods including quantization, pruning,
knowledge distillation, QLoRA and Retrieval-Augmented Generation (RAG)
to improve Small Language Model performance when used in financial
applications.By refining these techniques, the research seeks to demonstrate
how smaller models can effectively balance efficiency and accuracy.

2. Hallucination Mitigation and Accuracy Improvement: The main goal
involves developing methods which reduce hallucinations alongside accuracy
enhancement in financial SLMs. Research works to find out how adversarial
training methods with self-supervised learning techniques and hybrid system
implementations help enhance the factual accuracy within model
outputs.Additionally, the research will explore how fine-tuning
domain-specific question models can further enhance prediction reliability.

3. Data Security and Bias Mitigation: The model deployment on LEARN's
local servers ensures financial information privacy through data security
measures. Bias mitigation techniques will be developed to make financial
models deliver fair transparent results.

4. Development of Multimodal Data Integration Methods: Integrating
multimodal data;such as numerical financial data and textual reports into
SLMs. This will enhance the predictive capabilities of the models, providing a
more holistic approach to financial forecasting, risk analysis, and
decision-making.

1.3 Solution Overview

The proposed platform enables LEARN staff members to access AI-driven tools
which improve financial assessment while maximizing decision-making efficiency.
The system uses optimized financial data-driven Small Language Models to provide
solutions with accurate and secure processing capabilities. The system includes the
following components as explained in detail below:

2

a.Users

The primary users of this system are LEARN finance and administrative staff.The
AI-driven tools enable these users to perform financial record management while
generating insights and analyzing data together with detecting financial data
inconsistencies. Through this system the staff can accomplish their financial analysis
task efficiently.

b.Input

Figure 1.1: Data collection methods

The system primarily retrieves PDF financial statement reports from five years of
financial data collection, and the structured data can further enhance model training.

● Structured Data: Financial documents such as balance sheets and income
statements and cash flow statements and budgetary spreadsheets provided in
CSV and Excel documents format fall under structured data category.

● Unstructured Data: The system analyzes unstructured financial information
from financial audit reports together with bank statements and receipts and
contracts toward providing textual content in PDF or different file types.

● Surveys: Senior LEARN employees along with stakeholders and clients who
receive surveys will give valuable qualitative data concerning financial issues
and priorities and concerns.

● Web Scraping Data: The system also scrapes financial data from various
sources to ensure comprehensive data collection and analysis.

3

c.Process

The data processing starts with multiple sequential steps to achieve precision in
financial domain-specific model development and data handling:

● Data Preprocessing: Data cleaning operations begin after which the system
applies structural organization to the data during the preprocessing phase. The
conversion process for unstructured PDF information depends on OCR
technology and alternative text extraction systems to make the data readable
by machines. During this phase tokenization becomes part of the process
together with normalization and various other NLP techniques.

● Fine-tuning with QLoRA[28]: QLoRA functions as a fine-tuning method for
pre-trained language models to adapt the models using the financial dataset.
With this technique the model achieves high performance levels with reduced
computational load that leads to accelerated training and faster inference
execution.

● Integration of RAG: Retrieval-augmented Generation (RAG): The model
uses Retrieval-augmented Generation (RAG) for enhancing its capacity to
generate precise and contextually suitable replies. The model achieves better
performance through RAG because it retrieves significant financial
information to handle intricate queries and financial irregularities.

● Hallucination Reduction: Financial AI models must deal with the critical
issue of hallucinations because they produce incorrect and fabricated results
through their generated outputs. The system implements various methods to
reduce hallucinations to produce outputs which can be used confidently for
decision-making.

d.Output

The analysis generates various output types through the system.

● Financial Summaries: The system creates automated financial summarization
of LEARN's financial data including statements and performance indicators
together with financial measurement factors for high-level financial status
overview.

● Financial Classification Tasks: The system classifies financial data into
relevant categories, such as expense types, income sources, and asset classes.
This structured classification supports improved data organization and
analysis.

● Financial Prediction: The system generates predictions related to future
financial performance, such as revenue forecasting, market trends, or asset
valuations. These predictions help in strategic decision-making and long-term
financial planning.

● Sentiment Analysis: The system conducts sentiment analysis on financial
documents, reports, and external market communications. This helps to gauge

4

the tone and sentiment of financial content, providing insights into the
market's or organization's emotional response to financial events

e.System Requirements

The system demands this infrastructure for efficient processing along with system
operation:

● The system needs a high-performance local server with GPU acceleration
because financial data modeling and inference demands quick processing
throughout model training as well as fine-tuning sessions.

● The financial documents require sufficient storage capacity to accommodate
large historical datasets along with reports as well as documents.

● Secure authentication mechanisms need to be implemented because the system
handles sensitive data therefore only authorized personnel must access and
interact with the system.

1.4 Structure and Dissertation

The dissertation is structured as follows:

Chapter 2 provides a detailed review of related works, comparing Small Language
Models (SLMs) with Large Language Models (LLMs) and examining previous
research on approaches and techniques in financial NLP.

Chapter 3 introduces the proposed approach, focusing on the use of Optimized
Retrieval-Augmented Generation (RAG) combined with LoRA to create a more
efficient and effective question-answering system.

Chapter 4 explores the technology adapted for the project, including the techniques
used to optimize small language models and the technologies employed to facilitate
efficient development.

Chapter 5 delves into the analysis and design of the system, covering aspects such as
data collection, preprocessing, system development, experiments, and evaluation of
the model’s performance.

Chapter 6 details the implementation phase, including the practical aspects of data
collection, preprocessing, system development, experiments, and final evaluation of
the system.

Chapter 7 provides a comprehensive discussion on the findings, implications of the
research, and possible future directions in financial AI applications.

5

1.5 Summary

This introductory section presents the development of a Small Language Model
(SLM) for financial data in a resource-constrained environment. The study highlights
challenges such as limited computational power, accuracy concerns, and hallucination
risks in financial applications.[9],[10] By integrating quantization, pruning, LoRA
fine-tuning, and Retrieval-Augmented Generation (RAG), the model achieves
efficiency while maintaining precision.

Test reference [3]

6

Chapter 2 – Related work

2.1 Introduction

This section provides a concise overview of key technologies and methodologies
explored in the literature for optimizing Small Language Models (SLMs). The focus is
on various techniques such as Quantization, Pruning, Knowledge Distillation,
Retrieval-Augmented Generation (RAG), and LoRA, each aimed at enhancing model
efficiency and performance while minimizing computational demands.

2.2 SLM vs LLM

Table 1: Comparison between Small Language models(SLM) & Large Language
models(LLM)

Feature SLM LLM

Size & Complexity Smaller in size, with
fewer parameters

Massive in size, billions
of parameters

Computational
Requirements

Low computational
power; optimized for
efficiency

Requires high-end
GPUs/TPUs and
large-scale infrastructure

Training Cost Lower cost due to smaller
datasets and fewer
resources

Extremely expensive due
to vast datasets and high
training complexity

Performance in General
Tasks

Specialized performance,
optimized for specific
domains

Strong general-purpose
capabilities, excelling in
diverse NLP tasks

Accuracy & Precision High accuracy within a
specific domain (e.g.,
finance)

High accuracy in general
NLP but prone to
hallucinations in
specialized fields

Data Efficiency Requires fewer data for
training and fine-tuning

Needs massive datasets
for training and
generalization

7

2.3 Approaches and Techniques in Previous Research

The first part of review covers preliminary knowledge in several approaches and
techniques in previous research:

1. Optimization Techniques: Methods such as quantization, pruning, imitation
learning, progressive learning, knowledge distillation, and reasoning
distillation are explored as strategies to enhance the efficiency of SLMs. These
techniques allow smaller models to achieve comparable performance to LLMs
while significantly reducing computational demands.

2. Hallucination Mitigation: One of the primary concerns in financial AI
applications is the generation of hallucinated or incorrect data. The paper
discusses mitigation strategies, including Retrieval-Augmented Generation
(RAG) and explanation tuning, which help improve the factual accuracy of
model outputs. Additionally, hybrid approaches combining fine-tuned question
models and RAG are examined.[21]

3. Evaluation Metrics: The review details various evaluation metrics applicable
to SLMs, including perplexity, BLEU, TER, ROUGE, hallucination score[21],
and domain-specific financial metrics like Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE). These metrics are essential for assessing
model performance in text generation, prediction, and information retrieval
tasks.Also this describes financial benchmarks for accurate evaluation.

4. Challenges in Financial SLMs: The review highlights critical challenges,
such as data security, hallucination, and ethical concerns in deploying SLMs in
financial applications. Financial data security is particularly emphasized, with
discussions on private hosting solutions, federated learning, and differential
privacy as potential safeguards.

5. Domain-Specific Applications: The paper explores how SLMs are tailored
for industry-specific applications, including medical, legal, retail, and financial
domains. In finance, SLMs support market prediction, financial report
analysis, and automated customer interactions. The importance of
domain-specific fine-tuning to enhance model accuracy is underscored.

2.4 Summary of the lit review

This paper provides a comprehensive literature review on Small Language Models
(SLMs) and their application in the financial domain. The motivation behind SLMs
stems from the high computational cost and inefficiency of Large Language Models
(LLMs), making smaller models a viable alternative for specialized applications.

8

Related Works

The second part of the review paper focuses on the advancements in the finance
domain, specifically highlighting the integration of language models (LMs) into
financial tasks. The financial industry is defined by its vast numerical data, complex
terminology, abbreviations, and specialized language, which makes it a challenging
field for language models. Recent breakthroughs in LMs have resulted in major
improvements in areas such as automated financial statement analysis, personalized
report generation, financial forecasting, risk management, and compliance.

Prominent models like FINBERT (2022), BloombergGPT, and FinGPT are designed
specifically for the financial domain. BloombergGPT, for instance, is one of the
largest finance-focused models, with an impressive 50 billion parameters. Meanwhile,
FinGPT serves as an open-source tool aimed at enhancing the development of
financial LMs. These models have been adapted to a variety of tasks, including
sentiment analysis, entity recognition, and financial classification, which are vital for
extracting insights from financial data.

While these large-scale models exhibit impressive performance, research has shown
that smaller models tend to have lower accuracy, particularly for more complex
financial tasks. Models like Gemma-2B and OpenELM-270M have been evaluated in
zero-shot and few-shot learning scenarios, and while few-shot models perform better
in specific metrics like ROUGE scores, they still lag behind larger models, such as
BloombergGPT, in overall performance.

In Table 2, the performance of different language models in terms of resource
allocation and inference time is shown. For instance, models with fewer parameters,
like Apple-OpenELM-270M, require lower GPU utilization compared to larger
models, which can be more resource-intensive. This highlights the importance of
balancing resource efficiency with the performance capabilities of financial language
models.

Recent innovations in large language models (LLMs) have enhanced insights, trend
identification, and assessment capabilities, with notable models like FINBERT,
BloombergGPT, and FinGPT tailored specifically for financial tasks. A comparison of
these models is conducted in Table 3.

Key Models:

1. FINBERT (2022): Specialized in sentiment analysis, financial entity
recognition, and classification.

2. BloombergGPT: A large-scale 50-billion-parameter model trained on
comprehensive financial data, designed for robust financial analysis tasks.This
is not an open source language model.

9

3. FinGPT: An open-source model focusing on financial document
summarization and question-answering, fostering financial decision-making
automation.

Small language models (SLMs), such as FinBERT, BloombergGPT, and FinMA, have
been optimized for financial NLP tasks like sentiment analysis, document
classification, and text summarization. These models serve various roles, from
sentiment analysis to enhancing financial predictions, summarizing documents, and
answering complex questions.

Model Comparison:

● InvestLM: Trained using CFA exam questions and SEC filings, with a model
size of 658 million parameters.

● FinGPT: Focuses on document summarization, available in both smaller and
larger versions.

● BloombergGPT and FLANG: Known for sentiment analysis and named
entity recognition.

Additionally, models such as TinyLlama, Google-Gemma, and Microsoft-Phi vary in
size and dataset usage, reflecting the trade-off between computational efficiency and
task performance.

Challenges and Future Directions: Despite their successes, SLMs still face
challenges, including issues with data security, model bias, and hallucination control.
The future development of financial language models should focus on enhancing their
accuracy, integrating multiple data sources, and incorporating ethical guidelines to
ensure responsible use in the financial sector. Additionally, advances in technologies
like Retrieval-Augmented Generation (RAG) and optimization techniques such as
quantization and knowledge distillation hold potential for improving model reliability
and performance in real-world financial applications.

Table 2 : Hardware Requirements for language models

Model GPU (GiB) RAM (MB) Avg. Inf Time
(sec)

10

(1)Apple-OpenEL
M-
270M

2.2 642.2977 5.64

(2)Apple-OpenEL
M-
450M

3.7 588.7348 7.32

(3)Apple-OpenEL
M-
1.1B

8.2 765.3945 9.89

(4)Apple-OpenEL
M-
3B

13.6 473.3031 14.60

(5)Microsoft-phi-1
B

8.2 759.8051 7.28

(6)Microsoft-phi-1
.5B

8.2 670.2625 7.30

(7)Microsoft-Phi-2
B

10.3 410.8238 7.07

(8)Google-gemma
-
2B

9.5 792.9766 6.68

(9)TinyLlama-1.1
B

8.3 721.0668 5.65

Table 3 : Model parameters count and capabilities of language models

Finance-Specific Language
Models

Model Parameters Model Capabilities

BloombergGPT 50B [62]
Dataset:FinPile

50B [62] ● Sentiment analysis
● Named entity recognition
● Question answering

FinBERT(open) 110M [62] ● Sentiment analysis

11

Dataset:Financial
PhraseBank

● Financial entity recognition
● Financial classification tasks

FLANG (open) 110M [62] ● Sentiment analysis
● Named entity recognition
● Document classification

InvestLM(fine-tuned
LLaMA-open)
Dataset:CFA,SEC

65B [61] ● Sentiment analysis
● Financial text classification

FinMA(fine-tuned
LLaMA-open)
Dataset:PIXIU

7B and 13B [61] ● Sentiment analysis
● Financial document

summarization
● Question answering

FinGPT(open)
Dataset:FinQA,FinRed

7B and 13B [61] ● Financial document
summarization

● Question answering

Google-gemma 2B [61] 2B [61] ● Financial Text Classification
● Financial Document

Summarization
● Question Answering

TinyLlama(fine-tuned
LLaMA)

1.1B [61] ● Financial Text Classification
● Financial Document

Summarization
● Question Answering

Apple-OpenELM
Dataset:RefinedWeb,Pile

270M - 3B [61] ● Sentiment Analysis
● Named Entity Recognition

(NER)
● Document Classification

Microsoft-phi 1B - 3B [61] ● Sentiment Analysis
● Named Entity Recognition

(NER)
● Document Classification
● Question Answering

2.5 Summary

The literature review highlights recent advancements in language models (LMs)
tailored for the finance domain, where large amounts of numerical data, specialized
terminology, and complex transformations are prevalent. Models like FINBERT,
BloombergGPT, and FinGPT have shown significant progress in financial
applications such as automated financial analysis, forecasting, and risk management.
While large models offer superior performance, smaller models tend to be more

12

resource-efficient but face accuracy challenges. The review suggests further
development of small, resource-efficient models, integration of techniques like
knowledge graphs and Retrieval-Augmented Generation (RAG), and the creation of
more comprehensive financial datasets for future research.

13

Chapter 3 – Proposed Approach

3.1 Introduction

This chapter presents the proposed approach for the small language model on
financial data. The workflow of the system is shown here. It follows a
resource-efficient and accurate approach for developing a small language model for
financial data analysis.

3.2 Optimized RAG with LoRA for Smarter QA

Figure 3.1: High level architecture of proposed approach

To address the challenge of efficient and accurate question answering, we adopt an
optimized Retrieval-Augmented Generation (RAG) approach that integrates retrieval
techniques with lightweight and fine-tuned language models. Users submit a question
input, which is processed by retrieving relevant information from web search results
or a vector database containing structured and unstructured data. A pruner filters out
irrelevant content to retain only high-quality data, which is then formatted into a
prompt for response generation. The system leverages an Optimized RAG Model with
Quantization to reduce computational overhead while maintaining performance.
Additionally, a Knowledge Distillation Fine-Tuned Model with LoRA Techniques
enhances accuracy by refining the model’s knowledge while reducing its size. The
system generates initial outputs, which are further refined to produce the final answer,
ensuring precision, relevance, and computational efficiency. By leveraging
quantization, knowledge distillation, and LoRA-based fine-tuning, this approach
balances high-quality responses with optimized performance, making it a robust
solution for real-world question-answering applications.

14

3.3 Language model selection

For our task, which primarily focuses on analyzing financial statement PDFs, models
like FinBERT (with 110 million parameters) and FinGPT (with parameters ranging
from 2 billion to 8 billion) would be more suitable. These models are specifically
trained on financial data and are effective for tasks like extracting key information,
sentiment analysis, and classification from financial documents. FinBERT, with its
efficient architecture, can be particularly useful if hardware resources are limited,
while FinGPT can handle more complex financial data processing. Both models are
designed to understand the unique terminology and structures present in financial
statements, making them ideal choices for this task, and both are open source
language models.

In addition to these, we could consider training the following language models within
our own server:

1. TinyLlama (1.1 billion parameters) – A smaller model that could offer a
balance between performance and resource usage.

2. Apple-OpenELM (with parameter sizes ranging from 270 million to 3 billion)
– Known for its efficiency in training and inference, making it a viable option
for resource-constrained environments.

3. InvestLM (658 million parameters) – Trained on financial datasets like CFA
and SEC filings, this model specializes in sentiment analysis and financial text
classification.

3.4 Summary

This optimized RAG approach enhances question answering by retrieving and
filtering relevant data, using a quantized model and a fine-tuned LoRA-based model
for efficiency. It ensures accurate, refined, and computationally efficient responses,
making it ideal for real-world applications. Models like FinBERT and FinGPT are
well-suited for financial statement analysis, leveraging their specialized training on
financial data, while alternative models like TinyLlama, Apple-OpenELM, and
InvestLM offer additional flexibility for various financial tasks.

Chapter 4 – Technology Adapted

4.1 Introduction

This section discusses optimization techniques and mitigation strategies for
developing efficient Small Language Models (SLMs). The selected approaches focus
on enhancing performance while minimizing resource consumption, ensuring
interpretability, and supporting smooth deployment.

15

4.2 Optimizing Small Language Models: Techniques and Technologies for
Efficient Development

Developing efficient Small Language Models (SLMs) requires a series of mitigation
strategies and optimization techniques to enhance performance while reducing
computational demands. The following methodologies have been selected specifically
to address the challenges of resource efficiency, model interpretability, and
deployment feasibility.

Table 4 : Technology adopted and how they solve the problems

Techniques Technologies How it solves the problem

Quantization(Optimization
Techniques)

PyTorch(torch.quantizatio
n),TensorFlow Lite

To reduce memory usage and
computational overhead, making SLMs
more feasible for deployment in
resource-constrained environments.

Pruning(Optimization
Techniques)

TensorFlow Model
OptimizationToolkit,PyTo
rchSparseML

To streamline models by removing
redundant parameters, and reducing
inference time

Knowledge Distillation
(KD)(Optimization
Techniques)

DistilBERT (Hugging
Face)

To optimize efficiency while
maintaining reasoning ability

Retrieval-Augmented
Generation
(RAG)(Mitigation
Strategies)

LangChain,FAISS
,ChromaDB

To reduce hallucinations and improve
contextual responses.

LoRA
Techniques(Optimization
Techniques)

Hugging Face PEFT
LoRA by PyTorch

To reduce trainable parameters while
preserving performance

16

Table 5: Summary of technologies for implementing the proposed design

Component Technology

Frontend React.js

Backend API FastAPI(Python)

Model Serving Hugging Face

Database PostgreSQL(Structured
data),MongoDB(Unstructured
data),ChromaDB(VectorDB for RAG)

Authentication JWT/OAuth2

Deployment Docker,nginx,Gunicorn

CI/CD for Model Updates GitHub Actions

Server & Infra Ubuntu

Monitoring Prometheus

4.3 Summary

This section highlights optimization techniques for Small Language Models (SLMs),
including Quantization (PyTorch, TensorFlow Lite) to reduce memory usage, Pruning
(TensorFlow, PyTorch) to streamline models, Knowledge Distillation (DistilBERT) to
maintain reasoning ability, RAG (LangChain, FAISS, ChromaDB) for improved
contextual accuracy, and LoRA (Hugging Face PEFT, PyTorch) to reduce trainable
parameters while maintaining performance. These techniques enhance efficiency
while addressing resource and deployment challenges.

17

Chapter 5 – Analysis and Design

5.1 Introduction

This research follows a resource-efficient and accurate approach for developing a
small language model for facial data analysis. The methodology consists of several
key stages: data collection, data preprocessing, system development, conducting
experiments such as Knowledge Distillation(KD), RAG, LoRA, and model
evaluation. Figure 5.1 shows the system design for the proposed approach.

Figure 5.1: System design for the proposed approach

5.2 Data Collection

The data collection module gathers information from multiple sources, ensuring that
both structured and unstructured data are included. Structured data consists of
organized datasets such as database records and spreadsheets, while unstructured data
includes financial reports, and audit reports.Other than these primary data sources
from LEARN’s five-year dataset, additional data is also taken into consideration;

● Surveys are distributed to gather human input.
● Web scraping extracts information from online sources.
● User feedback is collected through interactions with the system.

The collected data is forwarded to the Data Preprocessing module for cleaning and
transformation before use in the system.

18

5.3 Data Preprocessing

This module cleans, normalizes, and transforms raw data into a structured format,
ensuring consistency and accuracy. It removes duplicates, handles missing values, and
converts text data into vectorized forms suitable for machine learning models.

● Data Extraction: Extracts data from pdfs and spreadsheets
● Data cleaning: Handles inconsistencies, missing values, and noise.
● Data transformation: Normalizes numerical values (e.g., financial ratios, stock

prices), standardizes data and tokenization & text embedding converts
financial text into numerical representations for machine learning.

● Feature engineering: Extracts key attributes like Named Entity Recognition
(NER) for financial terms and sentiment analysis for financial reports to
enhance the model performance.

The processed data is stored in a structured format and sent to the System
Development module for further use.

5.4 System Development

This module builds the software infrastructure, including backend, frontend, and
database components. It integrates AI-driven responses, a vector database for efficient
storage, and a user interface for accessibility.

● Backend development: A server is used to manage data storage, retrieval, and
model interactions. API endpoints are implemented to facilitate
communication between different components while ensuring real-time data
processing and request management.

● Frontend side: An interactive interface is developed to allow users to input
financial queries and view AI-driven responses. The frontend ensures a
user-friendly experience, making financial insights easily accessible.

● Database setup and integration : It involves storing structured financial data in
an optimized storage system. An efficient indexing mechanism is implemented
to facilitate fast data retrieval, enhancing overall system performance.

● LLM Integration: an AI pipeline to process user queries. The backend is
connected to a retrieval mechanism, which fetches relevant financial insights
based on the user’s request.

● Model Deployment: The system is deployed locally by setting up
dependencies, launching the backend and frontend, and integrating the
database. Testing ensures stability and accuracy, followed by performance
monitoring and optimization for efficient operation.

19

The system retrieves processed data from the Data Preprocessing module, making it
available for further analysis and storage. Additionally, it provides an interface for the
Experiments module, allowing to make more efficient fine tuned models. Once the
experiments are conducted, the system supplies relevant data to the Evaluation
module, where performance metrics and analysis are conducted to assess the
effectiveness of the implemented models.

5.5 Experiments

This module focuses on researching and implementing different model optimizations
and mitigation techniques to improve efficiency, accuracy, and performance.:

● RAG (Retrieval-Augmented Generation): This technique improves response
accuracy by retrieving relevant financial data before generating an answer.
Instead of relying solely on the model’s internal knowledge, RAG fetches
real-time information from external sources, ensuring more precise and
up-to-date responses.

● Prompt Engineering: This process involves optimizing input queries to
improve the responses generated by LLMs. By structuring prompts effectively,
the model produces clearer, more relevant, and contextually accurate answers,
enhancing overall performance.

● Fine-Tuning: Fine-tuning adapts pretrained models to domain-specific
financial data, improving their understanding and accuracy. By training the
model on relevant datasets, it becomes more specialized and capable of
providing precise insights in financial contexts.

● Pruning: Pruning reduces model complexity by identifying and removing
unnecessary parameters. This optimization technique helps streamline the
model, making it faster and more efficient without significantly affecting its
performance.

● Knowledge Distillation: The smaller model learns key insights from the larger
model, retaining accuracy while reducing computational requirements, making
it suitable for resource-limited environments.

● Quantization: Quantization compresses models by reducing the precision of
numerical values, lowering memory usage and computational costs. This
allows models to run efficiently on devices with limited processing power
while maintaining performance quality.

● LoRA (Low-Rank Adaptation):LoRA is an optimization technique that
reduces the number of trainable parameters in large language models while
preserving their performance. Instead of updating all model parameters during

20

fine-tuning, LoRA injects small, trainable weight matrices into specific layers,
significantly lowering memory and computational costs.

This module collaborates with the System Development module to implement and
integrate different AI models. Once the models are optimized, they are passed to the
Evaluation module for benchmarking, ensuring their performance is assessed using
predefined metrics.

5.6 Evaluation

The evaluation process consists of three key components: Human Evaluation,
LLM-Based Evaluation, and Benchmarking.

a. Human Evaluation: It assesses system performance through surveys, interviews, and
manual reviews, allowing experts to analyze model outputs and automate evaluation
using LangSmith.How it works:

● Surveys and Interviews: Collect qualitative insights from users.
● Manual Review: Experts analyze model outputs for quality.
● LangSmith: Automates evaluation using user interactions and logs.

It gathers insights from the System Development and Experiments modules, providing
feedback for improvements.

b. LLM-Based Evaluation: It employs automated techniques such as LangChain
Evaluation and predefined scoring metrics to measure model accuracy and coherence.
How it works:

● LangChain Evaluation: Tests response accuracy and coherence.
● Automated Scoring: Uses predefined metrics to rate responses.

This ensures quantitative assessment of models tested in Experiments and System
Development.

c. Benchmarking: It utilizes industry-standard metrics like the FinBen,PIXIU
framework, ROUGE, and F1 Score to evaluate system effectiveness.

● FinBen,PIXIU : Evaluates facial language model
● ROUGE Score: Measures how well generated responses match reference texts.
● F1 Score: Balances precision and recall for accuracy assessment.

By benchmarking models from Experiments and System Development, it offers
critical performance insights to guide future refinements.

21

5.7 Summary

This research develops a resource-efficient small language model for financial data
analysis through data collection, preprocessing, system development, experiments,
and evaluation. It integrates AI-driven responses, optimizes models using RAG,
fine-tuning, and LoRA, and assesses performance through human and automated
evaluation, ensuring accuracy, efficiency, and adaptability for real-world applications.

Chapter 6 – Implementation

6.1 Introduction

This section outlines the key technologies involved in implementing an AI-powered
financial query system, focusing on data collection, preprocessing, system
development, AI model integration, and optimization techniques. The system is
designed to efficiently process financial data, provide accurate AI-driven insights, and
ensure seamless real-time interactions between users and the platform.

6.2 Data Collection

This is where all the information for the system comes from. The goal is to gather
structured (organized databases, spreadsheets) and unstructured (PDF reports, audit
logs) data from multiple sources.Once collected, the data moves to Data
Preprocessing for cleaning.

Software:

● Python (,) for web scraping.

● PostgresQL for structured data storage.
● Pandas for handling tabular data.

6.3 Data Preprocessing

a. Data Extraction

Software:

● Tabula (Extract tables from PDFs)
● Camelot (For structured PDFs)
● PyMuPDF (fitz) (Extract text from PDFs)
● Pandas (Read Excel and CSV files)
● Apache Tika (Extracts content from multiple file formats)

22

b. Data Cleaning

Software:

● Pandas (Handling missing values, duplicates)
● OpenRefine (Data cleaning & transformation)
● Scikit-learn (Imputation techniques)
● Dask (Large-scale data processing)

c. Data Transformation

Software:

● Scikit-learn (Standardization & normalization)
● TensorFlow/Keras (Text embedding)
● spaCy (Tokenization & NLP processing)
● NLTK (Text preprocessing)

d. Feature Engineering

Software:

● spaCy (Named Entity Recognition - NER)
● FinBERT (Sentiment analysis of financial reports)
● Scikit-learn (Feature selection methods)
● XGBoost (Feature importance ranking)

6.4 System Development

a. Backend Development

Software:

● Node.js (Backend framework)
● Express.js (Lightweight web framework for API development)
● FastAPI (For high-performance API development with Python)
● Django REST Framework (For full-stack API handling)
● WebSockets (Socket.IO) (For real-time data updates)

23

b. Frontend Development

Software:

● React.js (Frontend framework for UI development)
● Next.js (For server-side rendering and optimized performance)
● Tailwind CSS (For responsive UI design)
● Redux Toolkit (For state management)
● Chart.js / D3.js (For financial data visualization)

c. Database Setup & Integration

Software:

● PostgreSQL (For structured financial data)
● MongoDB (For semi-structured documents)
● Vector Database (FAISS) (For LLM retrieval)
● Redis (For caching and real-time updates)

d. LLM Integration

Software:

● Hugging Face Transformers (For AI model implementation)
● LangChain (For query processing & RAG)
● FastAPI (To create an AI API)
● FAISS (For efficient vector search)
● FinBERT (For financial queries)

e. Model Deployment

Software:

Containerization & Virtualization:

● Docker (Encapsulates your backend, frontend, and database into isolated
containers)

● Docker Compose (Manages multi-container applications)
● Virtual Machines (VMs)

24

Web Server & Reverse Proxy

● NGINX (Acts as a reverse proxy to handle traffic efficiently)
● PM2 (Process Manager for Node.js) (Keeps backend services running)

Backend Deployment

● Gunicorn (For FastAPI/Django backend execution)
● Uvicorn (For FastAPI ASGI server)

Security & Monitoring

● Fail2Ban (Prevents brute-force attacks)
● UFW (Uncomplicated Firewall) (Configures access rules)
● Prometheus & Grafana (For monitoring server performance)

6.5 Experiments

a.Quantization: Applied using qLoRA to reduce model weight precision (int8, int4)
and enhance efficiency.

Software:

● Bitsandbytes (QLoRA) – 4-bit quantization
● TensorRT / ONNX Runtime – Hardware-accelerated inference
● Hugging Face Optimum – Model compression

b.Pruning: Activation-based pruning removes unimportant model parameters to speed
up inference.

Software:

● Hugging Face Optimum – Efficient model pruning
● Torch-Pruning – Lightweight pruning for PyTorch models
● DeepSparse – Optimization and compressing NLP models

25

c.Knowledge Distillation: A teacher-student approach transfers knowledge from larger
models to a smaller fine-tuned model for efficiency.

Software:

● DistilBERT – Pretrained lightweight models
● Hugging Face Trainer API – Train distilled models
● DeepSpeed – Efficient large model training

d. RAG Model (Retrieval-Augmented Generation - Mitigation Strategy)

Purpose: Uses external knowledge to generate context-aware responses and mitigate
hallucinations.Figure 6.1 shows high level overview of RAG implementation

Figure 6.1: High level overview of RAG implementation

Retrieval Module:

● Queries the vector database or real-time web search results to fetch relevant
financial data.

● Uses BM25 and cosine similarity scoring to rank retrieved information.

Generation Module:

○ The retrieved information is used as additional context for response
generation.

○ The model (FinGPT/FinBERT) generates responses with grounded,
fact-based outputs to prevent hallucination.

26

Fallback Mechanism:

○ If no relevant information is retrieved, the system defaults to a
pre-fine-tuned financial model or asks for user clarification.

Software:

● FAISS – Efficient vector search
● ChromaDB – Vector database for financial data retrieval
● LangChain – Framework for RAG-based retrieval
● ElasticSearch – For fast full-text search
● Haystack – Open-source NLP framework for RAG

e. Fine-tuned Model with LoRA (Optimization Technique)

Purpose: Acts as a backup if the RAG model fails to generate an accurate
response.Figure 6.2 shows high level overview of LoRA technique

Figure 6.2: High level overview of LoRA technique

● Fine-tuned Model:
○ Trained using LoRA (Low-Rank Adaptation) to efficiently adapt to

new financial data.
○ Maintains performance parity with full fine-tuning while reducing

GPU/memory usage.
● Adaptive Decision:

○ If the RAG model provides an incomplete/incorrect response, the
fine-tuned LoRA model refines the output.

○ Uses self-consistency checks to validate correctness before passing to
the user.

27

Software:

● QLoRA (Hugging Face) – GPU-efficient fine-tuning
● PEFT (Parameter Efficient Fine-Tuning) – LoRA support for large models
● Bitsandbytes – For memory-efficient model adaptation

6.6 Evaluation

a. Human Evaluation:Human evaluation assesses the quality and usability of the
model through direct user feedback and expert reviews.

Software:

● Google Forms: For collecting user feedback through surveys and interviews.
● LangSmith: Automates the evaluation process, enabling analysis of user

interactions and logs.
● Jupyter Notebooks : Used for analyzing and storing feedback data for manual

review.

b.LLM-Based Evaluation:This step involves measuring the system's performance
using automated metrics to ensure accuracy and coherence.

Software:

● LangChain: For response evaluation and ensuring accuracy in output.
● Scikit-learn / PyTorch: For implementing automated scoring metrics like

BLEU, ROUGE, F1 score.
● SpaCy / NLTK: For text preprocessing and validation.

c.Benchmarking:Benchmarking measures the model's performance against
industry-standard metrics.

Software:

● FinBen, PIXIU: Used for evaluating facial language models in specific
financial contexts.

● ROUGE Score: For comparing generated responses with reference texts.
● F1 Score (Scikit-learn): For balancing precision and recall in accuracy

evaluation.
● TensorFlow / PyTorch: To implement benchmark-specific tests.

28

6.7 Summary

This section details the development of an AI-driven financial query system, covering
data collection, preprocessing, system development, and model optimization. Key
technologies include FastAPI, React.js, PostgreSQL, MongoDB, and ChromaDB for
backend, frontend, and data storage. AI models use RAG for accurate insights,
optimized through LoRA, quantization, and pruning. The system is deployed using
Docker and Nginx, with monitoring via Prometheus for performance and stability.
This ensures a scalable, efficient, and reliable platform for financial data analysis.

Chapter 7 – Discussion
Creating a Small Language Model (SLM) tailored for financial data within a
resource-constrained environment presents several challenges. These include limited
computational power, memory constraints, and ensuring accuracy and reliability in
financial predictions and insights. Despite these challenges, optimizing and
fine-tuning models through techniques such as quantization, pruning,
retrieval-augmented generation (RAG), and LoRA (Low-Rank Adaptation) can
enhance performance while reducing resource usage.

Financial language models require efficient computational strategies to handle large
datasets and complex structures. Methods such as quantization (reducing precision of
model weights), pruning (removing redundant parameters), and LoRA (injecting
trainable low-rank matrices) reduce memory and processing demands. Lightweight
inference engines like ONNX Runtime and TensorFlow Lite further optimize
execution. Retrieval-Augmented Generation (RAG) improves accuracy by fetching
relevant financial data from vector databases like FAISS and ChromaDB before
generating responses. Fine-tuning with domain-specific datasets such as FinBERT
enhances contextual understanding. For deployment, Docker ensures portability,
FastAPI with Gunicorn optimizes backend efficiency, and PostgreSQL and MongoDB
manage structured and unstructured data efficiently.

Future work should explore adaptive quantization techniques, federated learning for
privacy-preserving financial model training, and hybrid AI approaches combining
rule-based financial regulations with language models. Edge AI deployment could
enable real-time financial analytics on low-power devices.

29

References

[1] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, et al. (2022). PaLM:
Scaling Language Modeling with Pathways. arXiv preprint arXiv:2204.02311, 17.

[2] A. Christopoulos. (2024). The Impact of Language Family on D2T Generation in
Under-Resourced Languages (Master’s thesis, Utrecht University).

[3] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Yang, A. Fan, et al. (2024). The Llama 3 Herd of Models. arXiv
preprint arXiv:2407.21783.

[4] A. Glaese, N. McAleese, M. Trebacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh,
L. Weidinger, M. Chadwick, P. Thacker, et al. (2022). Improving alignment of
dialogue agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 1.

[5] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, et al. (2022). Solving
Quantitative Reasoning Problems with Language Models. Advances in Neural
Information Processing Systems, 35, 3843–3857.

[6] A. Luo, P. Liu, & S. Esping. (2023). Exploring Small Language Models with
Prompt-Learning Paradigm for Efficient Domain-Specific Text Classification.

[7] A. Shridhar, A. Stolfo, & M. Sachan. (2023). Distilling Reasoning Capabilities
into Smaller Language Models.

[8] A. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, & D. Zhou. (2023).
Self-Consistency Improves Chain of Thought Reasoning in Language Models. The
Eleventh International Conference on Learning Representations.

[9] C. Jeong. (2024). Fine-Tuning and Utilization Methods of Domain-Specific
LLMs. arXiv preprint arXiv:2401.02981.

[10] D. K. Thennal, T. Fischer, & C. Biemann. (2024). Large Language Models Are
Overparameterized Text Encoders.

[11] D. K. Roumeliotis, N. D. Tselikas, & D. K. Nasiopoulos. (2024). LLMs in
e-commerce: A comparative analysis of GPT and Llama models in product review
evaluation. Natural Language Processing Journal, 6, 100056.

30

[12] F. Sun, X. Shen, P. Yu, Z. Kong, Y. Wang, & X. Lin. (2024). Pruning Foundation
Models for High Accuracy without Retraining.

[13] G. Christopoulos. (2024). The Impact of Language Family on D2T Generation in
Under-Resourced Languages (Master’s thesis, Utrecht University).

[14] J. Chen, H. Lin, X. Han, & L. Sun. (2025). Benchmarking Large Language
Models in Retrieval-Augmented Generation. Chinese Information Processing
Laboratory, State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences.

[15] J. Gou, B. Yu, S. J. Maybank, & D. Tao. (2021). Knowledge Distillation: A
Survey. International Journal of Computer Vision, 129(6), 1789–1819.

[16] J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, & Y. Tian. (2024).
Galore: Memory-Efficient LLM Training by Gradient Low-Rank Projection. arXiv
preprint arXiv:2403.03507.

[17] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde, J. Kaplan, H. Edwards, Y.
Burda, et al. (2021). Evaluating Large Language Models Trained on Code. arXiv
preprint arXiv:2107.03374, 4.

[18] M. Lee. (2023). A mathematical investigation of hallucination and creativity in
GPT models. Mathematics, 11(10), 2320.

[19] M. Hussien, M. Afifi, K. K. Nguyen, & M. Cheriet. (2024). Small Contributions,
Small Networks: Efficient Neural Network Pruning Based on Relative Importance.

[20] M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B. Shaikh, N. Akhtar, J.
Wu, S. Mirjalili, et al. (2023). A Survey on Large Language Models: Applications,
Challenges, Limitations, and Practical Usage. Authorea Preprints.

[21] P. Zhao, F. Sun, X. Shen, P. Yu, Z. Kong, Y. Wang, & X. Lin. (2024). Pruning
Foundation Models for High Accuracy without Retraining.

[22] Q. Xie, W. Han, X. Zhang, Y. Lai, M. Peng, A. Lopez-Lira, & J. Huang. (2023).
PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark for
Finance. 2.

[23] Q. Xie, W. Han, Z. Chen, R. Xiang, X. Zhang, Y. He, M. Xia, D. Li, Y. Dai, D.
Feng, Y. Xu, H. Kang, Z. Kuang, C. Yuan, K. Yang, Z. Luo, T. Zhang, Z. Liu, G.
Xiong, Z. Deng, Y. Jiang, Z. Yao, H. Li, Y. Yu, G. Huh, J. Huang, X.-Y. Liu, A.
Lopez-Lira, B. Wang, Y. Lai, H. Wang, M. Peng, & S. Anania. (2024). FinBen: A
Holistic Financial Benchmark for Large Language Models, 2-5.

31

[24] S. Roychowdhury, A. Alvarez, B. Moore, M. Krema, M. P. Gelpi, P. Agrawal, F.
M. Rodríguez, Á. Rodríguez, J. R. Cabrejas, P. M. Serrano, et al. (2023).
Hallucination-minimized data-to-answer framework for financial decision-makers. In
2023 IEEE International Conference on Big Data (BigData), IEEE, 4693–4702.

[25] S. Roychowdhury, M. Krema, B. Moore, X. Lai, D. Effedua, & B. Jethwani.
(2023). FiSTECH: Financial Style Transfer to Enhance Creativity without
Hallucinations in LLMs. Corporate Data and Analytics Office (CDAO), Accenture
LLP.

[26] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. S. Hossain, X. Li, S. R. Gupta, Y.
Wang, & W. Xie. (2023). Sublinear-Scale Few-Shot Adaptation of Large Language
Models. arXiv preprint arXiv:2310.02862.

[27] T. Wu, W. Han, Z. Liu, Z. Chen, & H. Li. (2023). Heterogeneous Models for
Finance: Multi-Task Learning and Knowledge Integration for High-Accuracy
Investment Predictions. arXiv preprint arXiv:2310.08071.

[28] W. He, P. Liu, & J. Zhang. (2023). Efficient Fine-Tuning Methods for Pretrained
Language Models. arXiv preprint arXiv:2306.04217.

[29] W. Zhang, Z. Zhang, M. Gupta, L. Li, M. Weitz, A. Guo, P. Lu, W. Qiu, C. Liu,
& M. Tan. (2024). Gradient-Based Adaptation of Large Language Models to
Domain-Specific Tasks. Nature Communications, 15(1), 2357.

[30] Y. Zhang, H. Yin, L. Yang, S. O’Donnell, & P. M. Thompson. (2023). Large
Language Models for Research Efficiency in Neuroscience. NeuroImage, 281,
119116.

[31] Z. S. Faruqui, A. Z. Nagar, A. Kar, & H. Gupta. (2024). Large Language Models
in Healthcare: Applications and Limitations. Computational Biology and Medicine,
167, 104501.

[32] A. Ammar, H. Abdeen, & P. Singh. (2024). Code-based Language Models:
Optimizing Developer Assistance. IEEE Software, 41(4), 28–34.

[33] D. J. M. F. Santosh, R. M. Babu, & P. Srinivas. (2023). Comparative Evaluation
of Llama 2 and GPT-3 for Large-Scale Healthcare Data Processing. Computational
Biology and Medicine, 126, 103632.

[34] G. Sharif, M. Gajjar, & M. Tiwari. (2023). Understanding and Visualizing LLM
Training Methods. Neural Information Processing Systems (NeurIPS), 2023.

[35] R. Nagpal, S. Sharma, & M. Singh. (2023). Merging Predictive Models with
Memory-Augmented Networks for Financial Forecasting. Financial Computation and
Modeling, 12(3), 78-92.

32

[36] V. Gupta, H. T. Liu, & R. Yang. (2023). A Survey on Chatbot Models in the
Domain of AI and Healthcare. AI & Medical Sciences, 8(2), 50–63.

[37] K. Alawadhi, R. Narayan, & N. Sharma. (2024). Real-World Applications of
LLM in Resource-Constrained Systems. arXiv preprint arXiv:2402.07823.

[38] M. M. Gopalan, A. P. S. Jain, & M. S. Kumar. (2024). Knowledge Injection in
Pretrained Models for Task-Specific Performance Boosting. arXiv preprint
arXiv:2403.07823.

[39] K. Lee, B. Kwon, & K. Yoo. (2023). Exploring Large Language Models for
Biomedicine and Healthcare. arXiv preprint arXiv:2312.04259.

[40] W. Shan, Z. Cheng, & D. Wei. (2023). Improving Accuracy in Multilingual
LLMs with Cross-Lingual Pretraining. Artificial Intelligence Review, 57(3),
2217–2231.

[41] B. Hasan, M. Altay, & M. Sami. (2023). Enhancing Model Generalization
through Structured Neural Networks. Computer Vision and Image Understanding,
193, 102387.

[42] S. Gupta, M. Saini, & N. Verma. (2023). Quantifying Bias and Fairness in LLMs.
Journal of Data Science, 21(4), 457–473.

[43] S. Mehmood, M. Rao, & J. Zia. (2023). Natural Language Processing in Modern
Applications: Challenges and Opportunities. AI & Automation, 4(2), 29–46.

[44] P. Agarwal, H. Gupta, & V. Ranjan. (2024). Fine-Tuning and Evaluation of
Generative Models for Multi-Modal Data. Artificial Intelligence & Robotics Journal,
31(1), 1-14.

33

