PeraVerse Heatmap Predictive Analysis (Team-07)


Team

Supervisors

Table of Contents

  1. Introduction
  2. Solution & Impact
  3. Features & Architecture
  4. How to Run
  5. Deployment
  6. Links

Introduction

Large events struggle with congestion, unpredictable visitor flows, and limited visibility into live occupancy. Our system ingests historical building data, predicts crowd levels for the next 15 minutes, and overlays the results on an interactive campus heatmap—empowering organisers to react before bottlenecks form.

Solution & Impact

The Heatmap Predictive Analytics solution delivers:

Impact

Features & Architecture

Key Features

Architecture Overview

How to Run

1. Clone Repository

git clone https://github.com/cepdnaclk/e21-co227-PeraVerse-Heatmap-Predictive-Analysis.git
cd e21-co227-PeraVerse-Heatmap-Predictive-Analysis

2. Install Dependencies

Backend

cd backend/heatmap/backend/exhibition-map-backend
npm install

Frontend (from project root)

npm install

3. Environment Variables

Create/update backend/heatmap/backend/exhibition-map-backend/.env:

DATABASE_HOST=localhost
DATABASE_PORT=5432
DATABASE_NAME=heatmap_db
DATABASE_USER=postgres
DATABASE_PASSWORD=your_password
PORT=3897

Frontend .env (project root):

VITE_HEATMAP_API_URL=http://localhost:3897
VITE_DEV_PORT=5173

4. Database Setup

5. Start Services

Option 1: Run Everything Together

npm run start:all

Option 2: Run Separately

Backend

cd backend/heatmap/backend/exhibition-map-backend
npm run dev
# or npm start

Frontend

npm run dev
# Vite dev server, default http://localhost:5173

Navigate to http://localhost:5173/heatmap to access the dashboard.

Deployment

The system can be deployed using:

Tags

Node.js, Express.js, React, TypeScript, Vite, EMA Algorithm, Real-time Analytics, Heatmap Visualization, Predictive Analysis, PostgreSQL, Supabase, Crowd Management, 75Exhibition