Unix One: An Introduction to the
Unix Command Interface

Visvanath Ratnaweera

For the Linux Initiative
Faculty of Engineering, University of Peradeniya

11 January - 14 February 2017

Course URL: https://feels.pdn.ac.lk/course/view.php?id=346

Abstract

"Unix One’ will take someone with no knowledge of Unix commands to being able to
move confidently in a text terminal.
Through completion of class work the participants will be able to:

get information about the Unix system environment
refer the built-in help mechanisms

navigate directories in a file system

do simple file manipulations

edit and manupulate text

communicate with other shell users in the same system

https://feels.pdn.ac.lk/course/view.php?id=346

Contents

Unix One (2017-01-25 21:04)

1 Introduction, Your first log in

You will get a shell account, which you can access from anywhere in the faculty network, or
in two steps from anywhere in the Internet. To access the shell you need a terminal emulator
on your machine. In the process you familiarize yourself with terms like terminal, remote log
in, shell, prompt, etc.

1.1 Why use a command interface

[WyseTerm academ hvce.edu [151.103.16.11]
File Edit Settings Connection Help

] S| %

/home/kantopet [?] ls
#*mail*#q3BEia# custom
#*mail*#sXgoEe# homepage
v Documents idapi
Program Files lynx beoeckmarks _html
1ynx bockmarks _html~
mail
msoffice
netscape
profile
/home/kantopet [?] LS
ksh: LS: not found
/home/kantopet [?]

4 L3

Connected To acaderm hvocedu [WT220 LIk 24,20 0047

Figure 1: A terminal session

Experienced system administrators maintain their machines from the command prompt.
They compile source code, install programs, troubleshoot their operation, automate rou-
tine tasks; all in this text environment. Unix relies heavily on text, whether in the form
of configuration files or as scripts, and Unix masters an elaborate system of pattern match-
ing in text called regular expressions. The Unix command language is also a programming
language. One can write interactive programs in this language or paste other specialized
programs together in scripts or pack routine tasks into scripts and schedule them to run
regularly.

Graphical User Interfaces (GUI) are convenient but they don’t tell you exactly what they do
behind the interface. Once something unexpected happens or if you have a task for which
there is no option in the GUI, you are stuck. In addition to that the text terminal doesn’t
require the overhead a GUI needs which is a critical factor in remote administration.

1.2 Your login to the Unix shell

In the early days people went to great lengths to access a Unix terminal. Only the system
administrators had access to the system console itself. Users accessed the machine through

Unix One (2017-01-25 21:04) 1

terminals - in the same building through serial lines or from a distances through telephone
line. The machines were simply too expensive to be duplicated!

Today it is the opposite. Computers are everywhere! Because of their diversity there are also
numerous ways of accessing them. There lies a problem for the beginner. Even within Unix
the multitude of flavours make them seemingly different to each other. Which means that
the inexperienced can not rely on the exact behaviour of individual examples.

Figure 2: The Raspberry Pi miniature computer

Therefore in this course all the participants will be working together in the same enviroment
- in a Raspberry Pi running a Debian GNU /Linux port, which you access remotely through
the network. (See the assignment of this week for details.)

1.3 Your first login

Typically a Unix terminal “greets” the user by printing something about itself on the screen
and then requests the user to identify himself:

The terminal shown in the above figure has printed the Unix flavour, the version number of
the kernel, the machine architecture and the host name. Then it requests the user to identify
himself by presenting him with a login prompt. The user has to sign in by entering his login
name and the password. Here is another example:

CrunchBang Linux waldorf cherry tty4
Kernel 3.13 on an i686

cherry login: john

Password: [suppressed]

Last login: Mon Feb 29 12:34:56 on tty6
Linux cherry 3.2.0—4—amd64
john@cherry:~$

1See unit 1 of the preliminary course History of FOSS

2 Unix One (2017-01-25 21:04)

Fedora Core release 5 (Bordeaux)
Rernel 2.6.15-1.2854_FCS on an i686

Jjezzmach login: root

Password:

Last login: Thu Jun 22 23:14:21 on ttyl
[root8 jezzmach 18 cd ..

[root@ jezzmach /18 Is

T TR e

|

N

[root@ jezzmach /18 help_

J

Figure 3: A terminal session

The first lesson: Unix is case sensitive! Don’t type John, if your login name is john. This
might come as a surprise for the typical MS Windows user, but Unix was case sensitive right
from the beginning with a strong orientation towards lower case - supposedly for easy typing.

The original terminals used serial connections, as a result there were many switches to be
set - transmission speed or baud rate, handshake method, duplex method (full or half), etc.
- and even required handling a telephone! That was magic which didn’t work without the
help of a local expert. The result of all that effort was to get the login prompt.

Today the world is different. Most of the users have a Microsoft Windows desktop in front of
them and they want to connect to the Unix across the Internet. If you are one of them get
the free terminal emulator program PuTTY from its site A Just copy the ’exe’ file to any
directory and run it! You might want to make a profile (Figure 2) so that you don’t have to
enter the same information every time.

If you are on a Unix machine like Mac or Linux, you definitely have a terminal emulator.
Look for a program called Terminal, Konsole, Command, or something similar. What you
need is just the SSH client, which is unimpressively called ssh. Try ssh login@host at the
command prompt. (Here login stand for you login name; the host is the DNS name or the
IP address of the host.

In all these cases, the first time you log in you will get a warning about establishing the
authenticity of the host. Accept it only if the finger print is correct, in the case of our ’arm’
it is 22:2f:cd:f3:df:d1:af:5d:66:dc:c0:74:68:86:14:22.

Once successfully logged in, the login procedure starts an interpreter which will be “talking”
to you. This is called the shell. The shell signals that it is listening by printing its prompt. In
the example above john@cherry:~$ is the shell prompt. Certain information in it are easily
guessed. Note the general format login@host, which we are going to encounter often.

*http://www.chiark.greenend.org.uk/~sgtatham/putty/

Unix One (2017-01-25 21:04) 3

http://www.chiark.greenend.org.uk/~sgtatham/putty/

ﬁ PuTTY Cenfiguration
Cateqory:
=B Sgssion Bamc optlons foryour Pu'I'I'Y gession
TE"" I_IDglging Specrfythe destination you want to connect to
S i Host Name (or IP address) Port
. Keyboard
Bl 1592 248 4022 22
- Features Connection type:
& Window “1Raw (7) Telnet (7 Rlogin @ S5H () Serial
.P'ppea!ance Load, save or delete a stored session
- Behaviour
... Translation Saved Sessions
- Selection RasFI
-~ Calours Default Settings
& Connection s —
- Data Save
D -
- Telnet Deleie
- Rlogin
- S5H
- Senal Close window on exit:
() Mways (C) Mever @ Only on clean exit
About [open || Goncel

Figure 4: Setting up PuTTY

Also note that the default shell prompt vary from system to system. Since the user can
customize it anyway, in this documentation we use simply the ’$’ character as the shell
prompt.

You can now start working in Unix.
1.4 Changing the password

You should change the initial password you received from the system administrator to one of
your own. You enter the command passwd to change your password:

$ passwd

Changing password for john.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password changed

When changing password not only that you should know the old password but you need to
type the new password twice. Also notice that certain systems may have restrictions on the
password like minimum length and whether you must use digits and/or special characters.

Note that the superuser can change password without providing the current password. Which
means that the superuser can not find out the current password of a user, he can only set it
to a new value.

4 Unix One (2017-01-25 21:04)

lerminal — ssh — 60x15
mottdliza:~f ssh cotd@webserver .example .com 5
Password:
Last login: Mon May 14 17:33:21 2887 from lisa
Welcome to Darwin!
cot@hart i34 [|

Figure 5: Connecting from Mac OS X or Linux

1.5 Logging out

The command to log out is, you guessed it, logout. It instructs the shell to terminate your
session. That will close the shell and reset the terminal so that it will fall back to the login
prompt you saw at the beginning. Try it!

On a side note: It is not meaningfull to shut down the machine as a normal user: this is
obviously something for the superuser!

1.6 Assignment 1

Step 1: If you are on Windows, install a terminal emulator like PuTTY and then log in to
either aiken.ce.pdn.ac.lk or tesla.ce.pdn.ac.lk. If you are on a Unix you can simply type ’ssh
eNUMBER@server.name’ in a terminal.

From there login to the ’arm’, a Raspberry Pi, by entering ’ssh eNUMBER@arm.ce.pdn.ac.1k’.
Step 2: Take a screen-shot just after logging in and upload it to the assignment tool.

Summary

In this week you have learned:

the advantages of the Unix command interface

the difference between the console and a terminal

the more common remote login over the network

to recognize the login prompt of a Unix terminal

to recognize a Unix shell prompt

to remotely log in to a Unix shell through the network

Unix One (2017-01-25 21:04) 5

2 A session with Unix

In this unid you will go through a longer session with Unix to get to know the system and
the terminal a bit better.

From the time you logged on to the system you are ”on session” until you log out. As you
read this section try those commands yourself in the newly recieved shell account!

2.1 Exploring your system environment
2.1.1 Viewing the system date and time

Users can display the system’s current date and time using the date command:

$ date
Thu Feb 29 21:21:12 IST 2015

The date string above might look strange to you. It is the format originally chosen by the
inventors of Unix and still the default format in most of the Unix-like systems. To change
the format give the date command a format string as an option. Here are some examples:

$ date "4+%I”
21:21:12

$ date "+%Y”
2015

Make a note of the timezone in the earlier example. In that IST stands for Indian Standard
Time, which is also the time observed in Sri Lanka. IST is 5 h 30 min ahead of UTC,
Coordinated Universal Time. Typically a Unix system’s hardware clock is synchronized to
UTC. The system knows the local time from its timezone setting. (And if you carry a
computer across timezones, you switch the timezone, not the system clock!)

The original designers of Unix have arbirtraliy chosen the instant 00:00:00 UTC of 1 January
1970 as the origin of its system time or the “epoch”. This has become a part of the Unix
standard and is widely used. You can get the this epoch time in seconds by running date
"+%S"-

The date command can also change the system time, but only the system administrator is
allowed do that. In fact, Unix systems rely much on accurate clock time and therefore almost
always synchronized with a time server. But system administration is out of scope right now.

2.1.2 Monthly calenders

The standard calender program of Unix is called cal:

$ cal
January 2015
Su Mo Tu We Th Fr Sa
1 2 3
4 5 6 7 8 9 10

6 Unix One (2017-01-25 21:04)

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

The program ncal offers you an alternative layout. Try cal -3 and ncal -3.

2.1.3 How busy is the machine

There is another time-related command called uptime which shows the duration for which
the system has been running. In addition it tells you how many users are currently logged
in and prints out three values for system load averages: the load average during the last 1, 5
and 15 minutes.

$ uptime
17:19:20 up 13:34, 6 users, load average: 0.22, 0.18, 0.15

The unit of measurement for load average is the number of CPUs (or hyperthreads) being
utilized. If the machine is single CPU 1.00 means the CPU is fully utilized, if it has 2 CPUs,
each with two hyperthreds a value of 4.00 means that all four CPU threads are being fully
utilized. (Well, there is more to it. For now we have to leave it at that.)

There is another famous command called top which continously monitors the system state:

top — 17:52:46 up 1:42, 7 users, load average: 0.10, 0.09, 0.12
Tasks: 157 total , 2 running, 155 sleeping, 0 stopped, 0 zombie
Cpu(s): 1.0 us, 1.1 sy, 0.0 ni, 97.8 id, 0.1 wa, 0.0 hi,

KiB Mem: 7987388 total , 1825888 used, 6161500 free, 79584 buffers
KiB Swap: 0 total , 0 used, 0 free, 854744 cached

PID USER PR NI VIRT RES SHR S %CPU %EM TIME+ COMMAND
2950 root 20 162m 22m 6884 S 50 0.3 2:49.21 Xorg
7829 foo 20 416m 34m 16m S 1.0 0.4 0:00.29 termin
6863 bar 20 468m 49m 14m S 0.7 0.6 1:06.15 evince

(]

o O O

2.1.4 System information

The system’s DNS name can be querried through the command hostname. The command
uname prints system information like the CPU architecture and the operating system:

$ hostname

arm

$ uname —a

Linux arm 4.4.11+ #709 SMP Mon May 23 15:28:00 BST 2016 \
armv6l GNU/Linux

Another source of system information are called environment variables. This is an area in
the memory space of the shell where a list of variables and their values are stored. One can

Unix One (2017-01-25 21:04) 7

querry them with the echo command. The value of a variable is addressed by prepending its
name by the $-sign:

$ echo $OSTYPE
linux —gnu
$ echo $SHELL
/bin/bash

Some other useful environment variables are: HOSTNAME, HOSTTYPE, TERM, USER.
Try them!

Note that traditionally the environment variables are written in all capital.

2.2 Screen handling
2.2.1 Type-ahead

The terminal emulator reads the keys you type as you type them immediately pass them
to the (remote) shell. The keys are normally “echoed” back to the terminal unless they
are suppressed as in the case of passwords. If the shell is busy with something else or the
connection is very slow, you might not see the echo immediately. But you don’t need to
worry. The keys strokes are put to a queue and the shell answers wenn it is back. Which
means, you can type blindly ahead of the shell output.

You can think of the keys strokes and the output of the shell as two independent streams of
characters. They do not get in to the way of the other!

2.2.2 Modifying the screen

If too much text is printed on terminal the clear command will clear it. Also watch the
behaviour of the simple Enter key. In fact, it is a simple way of testing whether a shell is
responding.

Programs may send special characters to the terminal to get various effects like colour or
blinking text. Sometimes this leads to mishaps, where the display gets completely messed
up. With the reset command you can recover, but you may have to type it blindly!

The original terminals had fixed sized fonts. Which meant that for a given resolution of the
terminal the number of characters per line (called columns) and the number of lines displayed
were always the same: 80 columns times 24 lines was a common standard. In today’s high
resolution graphics there is no such correlation.

You can querry the terminal size through the resize command.

$ resize

COLUMNS=92;
LINES=27;

export COLUMNS LINES;

8 Unix One (2017-01-25 21:04)

2.2.3 Control keys

In dedicated terminals there was a BREAK key to stop whatever the command is running
at that moment. Later this funtion was taken over by the Delete key. In todays keyboards
the Delete key deletes the last character you typed. As you can see these things are system
dependent. But a set of commands known as Control commands have a faily consistant
behaviour throughout many systems.

You can break a running program by typing Ctrl+c. To delete a character, the equivalent
to Delete, ctrl+h. ctrl+u deletes whole command line to the left of the cursor, ctrl+k kills
the part to the right of it. ctrl+d signals the end of input, which will close the shell. Or, if
you just want the output to pause, to keep something important disappearing off the screen,
type Ctrl+s, the pause. To restart type Ctrl+q.

The following table lists some of the more important Ctrl keys.

Shortcut | Effect

Ctrl-a Go to the beginning of the line

Ctrl-c Kill the current process

Ctrl-d (on a line of its own) Exit the current shell

(otherwise) delete the character under the cursor

Ctrl-e Go to the end of the line

Ctrl-h Delete the character to the left of the cursor (backspace)

Ctrl-k Delete from the cursor position to the end of line
Ctrl-1 Clear the screen
Ctrl-u Delete from beginning of line to cursor position

2.3 More about ending the session

In the previous unit we said that the command logout is the right way to log out. Strictly
speaking this is not right. You can log out only from the very first shell the login process
gave you. You could have started more shells on top of it. (You just start another shell by
typing its name. Try bash or dash, names of available shells.) Before you log out, you need
to cloase those shells. The proper way to do that is to type ctrl+d (or exit). The “exit”
from the last shell will automatically logs you out!

2.4 Assignment 2

Preparation: When capturing a screen-cast the typical GUI user makes HD films, generating
huge files which are sometimes not even sharp. The shell user captures his terminal in the
terminal itself. The resulting files are thousand times smaller and always sharp!

This is quite easy: There are many terminal recording tools. We will use ttyrec. Just by
issuing the command ttyrec it will begin capturing everything that happens in the terminal
to a file. To end the capture, type exit. You will find the recording in a file called ttyrecord.
To give it a different name, simply provide the file name as a parameter. For example:

$ ttyrec mywork. ttyrec
[work in the terminal]

Unix One (2017-01-25 21:04) 9

$ exit
exit

Please be careful not to press non-printable keys like arrows during the recording. They tend
to upset the recording!

To play back, run:

$ ttyplay mywork. ttyrec

Assignment: Login to your shell account and first go through the steps given below. Once
you are confident capture your work to a file named eNNNNN _assignment2.ttyrec. If you
still make a mistake, just start ttyrec again with the same file name.

Step 1. Display the system clock time.

Step 2. How many seconds have passed from 00:00:00 UTC of 1 January 1970 to the time
you are doing the assignment?

Step 3. Display the output of uptime.

Step 4. Get the values of the environment variables HOSTNAME, HOSTTYPE, USER and
HOME?

Step 5. Clear the screen.
Step 6. Find the size of your terminal in columns x lines. Hint: resize.

Now exit the ttyrec. Check the recording by running ttyplay. If everything is OK then go
back to the Assignment in Moodle, write a note saying that you have finished the assignment.
(You don’t have to upload anything, the superuser can play back the script file.)

Summary

e You know that the system clocks of Unix computers are synchronized to UTC and they
calculate the local time from their timezones.

e That the time keeper of Unix ticks relative to the “epoch”, which was 00:00:00 UTC
on 1 January 1970.

e Simple usage of the commands date, cal and ncal.

e Can get information about the operating system and the working environment from the
commands hostname, uname and the environment variables OSTYPE, HOSTNAME,
HOSTTYPE, SHELL, TERM.

e You know that the terminals measure their resolution in no. of columns x no. of lines
- 80x24 being the standard - and that you can querry your terminal program with the
resize command.

10 Unix One (2017-01-25 21:04)

3 Getting help from the system itself

In this chapter you’ll be introduced to:

e the manual pages and the GNU Info, the two primary documentation systems which
should be built into any Unix system

e the --help option provided by almost all the command line tools and the help com-
mand of the shell

e command completion and command history - two features which greatly simplify your
typing.

3.1 The manual pages

The original UNIX Programmer’s Manual documents the sytem divided into nine sections:
Section 1 deals with the commands for the end user, the commands we discuss in this course.
Incidentally games too were a part of the system, section 6 contains information on games.
The remaining sections handle details which are aimed for the programmer and the system
administrator. This documentation was always a part of the system.

The man program searches, formats, and displays the information contained in those manual
pages. Because many topics have a lot of information, output is piped through a terminal
pager program for convenient viewing one page at a time; at the same time the information is
formatted for a good visual display. You can call man just by giving the name of the program
which would like to know more about. For example:

$ man uname

UNAME(1) User Commands
UNAME(1)
NAME
uname — print system information
SYNOPSIS

uname [OPTION]. ..

DESCRIPTION
Print certain system information. With no OPTION, same as —s.
—a, —all

print all information, in the following order, except omit —p
and —i if unknown:

—s, —kernel —name
print the kernel name

(o]

The output says that the page is from section 1 'User Commands’ and explains its usage.

Unix One (2017-01-25 21:04) 11

Note that the man pages have a well defined structure, part of which is listed in next table.
Thanks to their structure the man pages can be automatically converted to HTML, to book
form or to graphical help programs. You will encounter them if you continue working in the
shell after the course, but during this course we expect you to refer the local man pages with
the help of man.

Ttem Description

SYNOPSIS Command usage along with the optional and non-optional arguments
DESCRIPTION | Details on how to use the command and and explanation of each section
EXAMPLE Examples of how to use the command

FILES Files that have to be available for this command to work

SEE ALSO Commands that are similar in purpose

DIAGNOSTICS | Explanation of error messages

WARNINGS Things to be careful about when using the command

BUGS Known problems and suggested improvements

For reading long manual pages on screen man delivers them through a pager, which depends
on the Unix flavour. The pager used in Linux is called less. You navigate in less with single
key strokes: f, Ctrl4+f or space bar to scroll page-wise forward or b, Ctrl4+b, or Shift+space
to scroll back and 'q’ for quit. The key ’h’ gives your the the full list of commands.

Another useful key is / (forward slash), the search key. Often all you need to know is what a
specific option of a command does, for example what 'uname -s’ really means. In such cases
just call 'man uname’ and then press / - s. If the first hit is not the one you were looking
for, keep on pressing n (for next).

Exercise. Call the man pages of the commands you already know and note down options you
find interesting. Don’t forget 'man man’ too!

By default the man command prints only the dedicated page specifically about the topic. You
can broaden this to view all man pages containing a particular string in their name by using
the -f option. The following dialog shows that there is only one date command whereas there
are two time commands.

$ man —f date

date (1) — print or set the system date and time
$ man —f time

time (7) — overview of time and timers

time (2) — get time in seconds

You select the section of the manual by giving its number as an optin:

$ man 2 time

TIME(2) Linux Programmer’s Manual TIME (2
NAME
time — get time in seconds

(]

$ man 7 time

12 Unix One (2017-01-25 21:04)

TIME(7) Linux Programmer’s Manual TIME(7

NAME

time — overview of time and timers

(...

You get the same effect of 'man -f’ by the command whatis.

$ whatis time
time (7) — overview of time and timers
time (2) — get time in seconds

A common problem with the man command is that you need to know the name of the
command you want to know more about. The -k option broaden the search by including all
commands whose description contains the search string:

$ man —f user

user: nothing appropriate.

$ man —k user

adduser.conf (5) — configuration file for adduser(8) and addgroup (8
deluser.conf (5) — configuration file for deluser(8) and delgroup (8

(...

The apropos command is equivalent to ‘'man -k’:

$ apropos user
adduser.conf (5) — configuration file for adduser(8) and addgroup (8
deluser.conf (5) — configuration file for deluser(8) and delgroup (8

(...

3.2 GNU info

The GNU Project distributes most of its on-line manuals in the Info format, which is more
free-form than man pages. Functionally, the GNU Info System resembles man in many ways.
However, topics are connected using links (even though its design predates the World Wide
Web). There are two primary Info readers: the text-based program info designed just for
this purpose and the ’info’ package in GNU Emacs, which supports using a mouse. In this
course we look at info only.

Typing ’info’ in a terminal with no arguments displays an index of the available topics. You
can browse through the topic list using the regular movement keys: arrows, Page-Up, and
Page-Down.

You can view the documentation for a particular topic by typing ’info topic’. The system
then searches for the topic in all available info files. Some useful keys are: h for help, and
Enter to select a menu item and q for quit.

The topic which you view in the info page is called a node. Nodes are similar to sections
and subsections in written documentation. You can move between nodes or view each node
sequentially. Each node may contain menus and linked subtopics, or items.

Unix One (2017-01-25 21:04) 13

Items can be compared to Internet hyperlinks. They are identified by an asterisk (*) at the
beginning of the item name. Named items (outside a menu) are identified with double-colons
(::) at the end of the item name. Items can refer to other nodes within the file or to other
files. The folloing table lists the basic keystrokes for moving between nodes.

Key | Function

n Go to the next node

p Go to the previous node

u Move one node up in the index

3.3 The help option

The third source of Linux documentation is to use the help option.

Most commands have short help screen available which can be viewed using the —help or the
-h option along with the command or application. For example, to learn more about the
uname command, you can run:

$ uname —help
Usage: uname [OPTION]...
Print certain system information. With no OPTION, same as —s.

—a, —all print all information, in the following
order , except omit —p and —i if unknown:

—s, —kernel —name print the kernel name

—n, —nodename print the network node hostname

The help option is useful as a quick reference and it displays information faster than the man
or info pages.

3.4 The help command

Some popular shell commands (such as echo) silently run their own built-in versions of system
programs or utilities, because it is more efficient to do so. To view a synopsis of these built-in
commands, you can use the help command of the shell.

$ help time
time: time [—p] pipeline
Report time consumed by pipeline ’s execution .

Execute PIPELINE and print a summary of the real time, user
CPU time, and system CPU time spent executing PIPELINE when
it terminates.

Options:
—p print the timing summary in the portable Posix format

(]

14 Unix One (2017-01-25 21:04)

To get a list of the available topics, just run help. For these built-in commands, help performs
the same basic function as the -h and —help arguments (which we will discuss shortly) perform
for stand-alone programs.

3.5 Command completion, command history

Most of the Unix shells have a feature called command completion. If for example you know
only the beginning of a command, let’s say 'up’ for uptime’, you can type 'up’ and then press
the Tab-key. Since there are many commands which starts with 'up’ the shell will not react.

Press the Tab-kay a second time and it will list all the available commands which start with

up’.
On the other hand, if what you typed unique, the shell will immediately complete the com-
mand once you press the Tab-kay.

The same thing with file names. You can start typing a file name and then press Tab for the
shell to complete it.

Another very useful feature to minimize typing is the command history. In its simplest form,
just press the Up-arrow for the shell to bring the stack of previous commands one-by-one.

3.6 Assignment for the week
Take the test in the course platform:

e All the MC questions have a single correct answer.
e The fill-in fields expect a single word, the case (simple or capitol) is important.
e There is no time limit for the test.

e You have three attempts. The best score counts.

Allowed material: You are allowed to consult only the course lecture note and the help built
in to the shell of the Raspberry Pi you are working in.

Hint: You can open two terminals to your training computer at the same time. In one you
can consult the built-in documentation and in the other test your answers to the questions.

Summary

e The main sources of Linux documentation are the manual pages, the GNU Info docu-
ments, the —help option and the help command.

e The man utility searches, formats, and displays man pages.

e The manual pages provide in-depth documentation about programs and other topics
about the system including configuration files, system calls, library routines, and the
kernel.

e The GNU Info is the starndard documentation system of the GNU project. Its nodes
are hyperlinked and accessible via command line, web, and graphical tools using Info.

Unix One (2017-01-25 21:04) 15

16

e Short descriptions for commands are usually displayed with the —help argument.
e The help command displays a synopsis of the commands built-in to the shell.

e The Tab-key and the Up-arrow greatly simplfy the typing: the former auto-completes
program and file names, the latter brings up previous commands from the command
buffer.

Unix One (2017-01-25 21:04)

4 Files and directories

At the end of this chapter you:

e can copy, move and delete files

e how to get meta information on files

e know safe names for files

e can take hexdumps of files

e can display the content of text files

e can create, move and delete directories

e know the difference between absolute and relative paths
e can navigate a file system

know the short cuts to some directories

In this chapter we go through the day-to-day use of a computer. During the process you will
come across a number of new commands. Since you learned how to get help from the system in
chapter 3 the commands will simply be used without much explanation. All these commands
and their on-line help are available in your practice acccount. It is highly recommended that
you repeat those examples and refer the on-line help as we progress. Some options we discuss
are subtle, taking notes will help to remember them.

4.1 Handling files
4.1.1 What is a file

Like any other operating system Unix stores information in chunks called files due to their
similarity to ordinary office files. Each file has a name, content and some administrative
information like file size, the physical place in the storage medium, various timestamps, the
owner, etc. sometimes called the meta information, because they are about the content, not
the content itself.

The file system in Unix is organized in such a way that you can maintain your own personal
files without interfering with files belonging to others. In Unix jargon it is called your home.
Every user has a "’home’ of his own. (Remember the HOME environment variable from the
assignment last week?)

For the examples below we have copied two files to your home. The 1s (list) command lists
the names of files:

$ ls

knave queen

Unix One (2017-01-25 21:04) 17

So the files are named knave and queen. Notice that the list is sorted alphabetically.

Hint: We will be manipulating those files. Don’t be afraid you might break something. You
can always get a fresh copy from user e00000. The command for this is 'cp /home/e00000/ file
knave’. The meaning will be discussed below.

It is important to note that you can not ’open’ a file without knowing the kind of information
in it and how exactly they are coded. For example, if you somehow open a HTML file with
a photo viewer, you won’t see anything useful. People use filename extensions like .txt, .c,
.html, ... as a convenience, but there is no mechanism to gurentee that the content matches
the extension! The file (file type) command will tell you the kind of information in a file.
Let’s try it:

$ file knave
knave: ASCII text
$ file queen
queen: ASCII text

So both files are simple text files.

To get the time of last modification run 1s with the option -1 (long). If the time resolution
is not good enough use the 1s --full-time option:

$ Is —1 knave
—w—r—r— 1 user group 91 Dez 30 22:15 knave
$ Is —full—time knave

—w—r—r— 1 user group 111 2014—-12-30 22:15:47.787031906 40100 knajy

y €

You can update the time stamp of a file by “touching” it:

$ 1s —1 knave
—rw—r—r1r— 1 user group 91 Dez 30 22:15 knave
$ touch knave
$ 1s —1 knave

—rw—r—r— 1 user group 91 Feb 11 22:15 knave

Hint: The touch command can be abused to create empty files, because touch creates an
empty file if the given file does not exist.

$ touch king
$ Is —1 king
—rw—r—r1r— 1 user group 0 Feb 11 22:30 king

In fact 1s -1 brings a whole list of meta information. In this chapter we are going to discuss
only a few of them. For the sake of completness you will find the full list in the next table:

18 Unix One (2017-01-25 21:04)

Column nr. | Description
1 File type and file access permissions
2 Number of links
3 File owner
4 Group owner
5 File size (in bytes)
6, 7 and 8 | Month, day and time of last modification to the file
9 Name of file

The final meta information we are going to look at is where a file is kept in the file system.
When the file system was created it organizes the space in blocks and gives an index to each
block called inode. The inode of the starting block of a file is all what the file system needs
to find a file. The 1s -i lists the inodes of files:

$ 1s —i
3156545 knave 3156550 queen

4.1.2 What’s in a file name

So far we have used filenames without saying what a legal name is. First, in its initial design
Unix filenames were limited to 14 characters. In today’s Unix systems a file name could be
upto 254 characters long, which should be ample, and should be utilized. Second, although
you can use almost any character in a filename, common sense says you should avoid non-
printable (invisible) characters and characters that have other meanings. We have already
seen that the hyphen and double hyphens are used by Unix commands to denote their options.
So if you had a file whose name was -t, you would have a tough time listing it with 1s.

Besides the hyphen as a first character, there are other characters with special meaning. To
avoid pitfalls, you would do well to use only the latin characters a-z and A-Z, the digits 0-9,
the period ’.’, the underscore ’_” and the hyphen ’-’. The hyphen should not be used as the
first character. The period, the underscore and the hyphen are conveniently used to divide
filenames into chunks, as in assignmentl perera sunil.txt or draft-2015-02-13.0odt.
Finally don’t forget that the case distinctions matter - Assignmentl Perera Sunil.txt is
not the same as assignmentl perera sunil.txt! The command line user tends to prefer
lowercase - for easy typing.

4.1.3 Copying, moving and deleting files

The cp (copy) command duplicates files. Its syntax is cp source target. Example:

$ cp knave knave2
$ Is

knave knave2 queen

Keep in mind that if the target exists, it will simply be overwritten. If you want to be
informed when that happens, use the -i (interactive) option.

To move files use the mv (move) command:

Unix One (2017-01-25 21:04) 19

$ mv knave knave?2
$ 1s

knave2 queen

The rm (remove) command deletes files:

$ 1s

knave knave2 queen
$ rm knave2

$ 1s

knave queen

Note that the file will be silently removed. If you want add confirmation to it, use the -i
option:

$ Is

knave knave2 queen

$ cp —i knave knave2

cp: overwrite ‘knave2’? y

4.1.4 Content of a file

To look at the content of a file byte-by-byte you take a ’dump’. The original Unix program
for this is od (octal dump). It was common those days to work in the octal (base 8) system!

$ od knave

0000000 062163 005146 066040 066154 000012
0000011

$ od —h knave

0000000 6473 0a66 6c20 6¢6¢ 000a

0000011

$ od —c knave

0000000 s d f \n 1 1 1 \n
0000011

The example above demonstrates that the default behaviour of od could be changed by using
options: -h (hexadecimal), -c (ASCII character).

There is another command which is often abused to display the content of text files. It is
the cat (concatenate, to join) command, which was originally meant to join two or more
files in to one. But you can just make it print the content of files by giving their names as
arguments:

$ cat queen
The Queen of Hearts ,
she made some tarts,

Print knave too. How do you print the full poem out of them?

20 Unix One (2017-01-25 21:04)

4.2 Handling directories
4.2.1 Absolute paths

When you are logged in to a shell, you are always “in” some directory called current directory
or working directory. The pwd (print the name of working directory) command tells you where
you are. Immediately after log in, you begin the session in your home directory:

$ pwd

/home/e00000
$ echo $HOME
/home/e00000

The cd (change directory) command changes the current directory to the directory specified:

$ pwd
/home/e00000
$ cd /usr/bin
$ pwd

/usr /bin

Paths to directories in the examples above always started with a /, the 'root’, which is the
beginning of a Unix file system. Such paths are therefore called absolute pathes.

Now to come back to your home, you can of course enter cd /home/e00000’. But that kind
of typing is prohibitive. Unix allows many short cuts. For example just cd without any
arguments takes you to your home.

Another short cut is the hyphen: ’cd -’ takes you to the previous directory you were in. Try
them out!

4.2.2 Relative paths

The cd command also allows relative paths. For example, let’s assume that you are in /usr.
Then change to /usr/bin it is enough to type cd bin because the directory bin is where you
“stand”.

$ cd /usr
$ pwd
/usr
$ cd bin
$ pwd
/usr/bin

9

In every directory, except in the root, there is a special directory with the symbol ’.." (two
dots) which points to the directory above it, the so called parent directory. For example to
go back to /usr from /usr/bin, you could do cd . .:

$ pwd
/usr /bin
$ cd

Unix One (2017-01-25 21:04) 21

$ pwd

/usr

Another short cut to remember is the '™’ (tilde), which denotes your home directory. More
interestingly, ~ loginname stands for the home directory of the user loginname. Try changing
to the home directories of others!

Note for the experts: Don’t close your home directories for others yet. That’ll take the fun
out of the game!

4.2.3 Creating, moving and deleting directories

The mkdir (make directory) command is used to create directories:

$ mkdir progs

$ Is

knave progs queen
$ Is —F

knave progs/ queen

The previous example shows that the command 1s alone would not mark directories differ-
ently. The option -F prints a slash behind directory names. (OK, in RasPi color is activated.
Remember, the shell should also work on monochrome monitors!)

You can move directories, just like files:

$ mkdir progs

$ mv progs /tmp
knave progs queen
$ 1Is —F

knave progs/ queen

The rmdir (remove directory) command removes the dirctory specified as an argument to it:

$ 1s —F

knave progs/ queen

$ rmdir progs

OR

$ rmdir progs

rmdir: failed to remove ‘progs’: Directory not empty
$ rmdir —rf progs

$ 1s

knave queen

4.3 Assignment for the week
The agents of a call center were maintaining there logs by throwing all their log files in

to a single directory. Each agent had his own way of naming files. You have the job of
bringing order in to this. Your proposed solution is the hierarchial directory structure: the

22 Unix One (2017-01-25 21:04)

top directory, called calls, will have subdirectories tech (the tech team), sales (the sales
team), etc. Within those team directories the agents will have their own directories, named
after their IDs, say anula, saman, ...

Assignment:

e Crete the top directory calls in your home.
e Under calls create the directory tech.
e Inside tech create the directories anula and saman.

e Inside anula create two empty files jan and feb.

Submission: Make a record of all the commands you issued in you practice Unix to the
assignment tool in Moodle so that you will have clear record like in the examples in the
lecture note. Also add your comments to the right of the commands. Your solution finally
look like this:

$ cd # change to my home
$ mkdir ... # create

$ cd ... # change to
Summary

You have learned the meaning and the basic usage of the following commands:

1s (list)

e od (octal dump)

e cat (concatenate)

e cp (copy)

e mv (move)

e rm (remove)

e pwd (print working directory)
e cd (change directory)

e mkdir (mkdir)

e rmdir (remove diectroy)

Unix One (2017-01-25 21:04) 23

5 Collaboration tools

In the early days it was common for many people to work in one machine, often at the
same time. Naturally ideas like messaging, chat, mail, etc. were part of Unix right from the
beginning. This week’s unit you will get to know those original tools for viewing users logged
on at a specific time, write and talk to them get information on users who are off-line and
finally how to e-mail in the command line.

5.1 Who are my neighbours
5.1.1 who, what, last, etc.

Let’s see what manual pages exist related to 'who’:

$ man —k who

(]

w (1) — Show who is logged on and what they are doing.
w.procps (1) — Show who is logged on and what they are doing.
who (1) — show who is logged on

who@ (1) — prints the list of active users on a remote host.
whoami (1) — print effective userid

(]

The commands who (who is logged in), w (what they are doing) and whoami are interesting
for us:

$ who —H

NAME LINE TIME COMMENT

user0 pts/0 2015—-02—14 16:26 (1.2.3.4)

userl pts/1 2015—-02—14 16:47 (5.6.7.8)

userl pts/2 2015—-02—14 17:32 (5.6.7.8)

$ who am i

userl pts/1 2015—-02—14 16:47 (5.6.7.8)

$ w

17:34:06 up 8:15, 3 users, load average: 0.08, 0.09, 0.12
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

user0 pts/0 1.2.3.4 16:26 49:26 1:13 0.39s sshd: pi [priv]
userl pts/1 5.6.7.8 16:47 6.00s 2.17s 0.39s sshd: pi [priv]
userl pts/2 5.6.7.8 17:32 1:26 1.21s 1.21s —bash

$ whoami

userl

As you can see in the example above, who -H prints headers to the columns. who am i is
a special version of who showing details of one’s own session. The output of w above shows
that two users are logged in remotely, userl has two sessions open.

The command last (last logged in) lists the users logged in last.

‘# last —5

24 Unix One (2017-01-25 21:04)

userl pts/1 1.2.3.4 Sat Feb 14 17:50 still logged in
userl pts/0 1.2.3.4 Sat Feb 14 17:47 still logged in
reboot system 3.18.7+ Sat Feb 14 09:13 — 17:56 (00:10)
user0 pts/2 5.6.7.8 Sat Feb 14 17:32 — down (00:13)
userb pts/2 8.7.6.5 Sat Feb 14 17:03 — 17:24 (00:20)

The user 'reboot’ is a special kind of a user. It shows that the local time is 17:56 and the
machine has been running since 09:13 the same day.

5.1.2 finger

The command finger gives you some information of other users, in the system: .

$ finger 00000

Login: e00000 Name: Bindu Raj
Directory: /home/e00000 Shell: /bin/bash
Office: PR21, 34 56 Home Phone: 012 345 67 89

Last login Mon Dec 29 19:33 (IST) on pts/0 from 10.20.30.40
Mail last read Sun Feb 15 00:14 2015 (IST)

This information is called GECOS (General Electric Comprehensive Operating System) in
Unix. It is a term originated in a now extinct operating system. Some information like the
phone number can be can be set by the user. The command is chfn (change user name and
information). In the practice computer only the super user can change the user names, but
you can set other values.

Excercise: Add (hypothetical) home and office phone numbers and a room number to your
GECOS.

You will leave additional information like vacation notices or about your current work. See
for example:

$ finger 00000

Project:

Working on the Apollo mission ;)
Plan:

I am out of office till 25 February.

The trick is to create special files like .project and .plan in your home directory. Since we
haven’t done file editing yet, you can create those files through the following hack:

$ echo ”Working on the Apollo mission ;)” > .project
$ echo ”I am out of office till 25 February.” > .plan

Unix One (2017-01-25 21:04) 25

5.2 Messaging
5.2.1 write

If you are working in a multi-user Unix system, you are bound to see messages like Message
from userX pts/2 ... accompanied by a beep tone. UserX wants to write to you, to
respond you start write giving the login name (and the terminal, if userX is logged in more
than one).

The write program imposes no rules, doesn’t have a protocol except that pressing Return
sends complete lines to the other side. The convention is to take turns, ending turn with
(o), which stands for “over”, and to signal your intent to quit with (00), for “over and out”.
Finally, Ctrl-d ends the connection.

The following screen artificially seperates the messages of the two partners:

userX’s terminal userY ’s terminal

$ write userY
Message from userX
$ write userX
Message from userY
How about lunch? (o)
How about lunch? (o)
In ten minutes. (o)
In ten minutes. (o)
Fine! (o0o0)
Fine! (o00)
Agreed. (o00)
Ctrl—d
EOF
Ctrl—d
EOF

If you don’t want to be bothered with such messages, refer mesg.

5.2.2 talk

talk is what is today known as “chat”. In the example below userX starts a conversation by
typing talk userY@localhost. Then userY responds as requested, that will join them in a
full screen chat setup.

userX’s terminal userY’s terminal

$ talk userY@localhost
Message from Talk_Deamon ...
talk: connection requested
talk: respond with: .
$ talk userX@localhost

26 Unix One (2017-01-25 21:04)

[connection established]

X types here Y types here

Ctrl—c to end Ctrl—c to end

Typing of Y reflected Typing of X reflected
5.3 Mail

The system provides a postal system for communicating with other users. You must have
noticed the message about mail as you logged in. You might even get notices of newly arriaved
mail.

To read your mail, open your mail client, often simply called mail. An overview of your mails,
called mail headers, will be printed. To read a the current message, just type 'p’ (print), or
to read a specific message type 'p msg.no’. ’h’ (headers) gives you the listing of headers. ’s
filename’ (save) will save a message in a file. 'd’ deletes messages, and ’q’ quits the program.

$ mail

Heirloom mailx version 12.5 6/20/10. Type 7 for help.
”/var/mail/e00000”: 2 messages

>0 1 Imran Khan Fri Feb 11 19:27 31/794 Hi there!
>0 2 Sharuk Khan Fri Feb 12 21:12 31/794 Greetings
>0 2 Kublai Khan Fri Feb 12 09:13 31/794 Bye bye

p1

Message 1:

From Imran Khan Fri Feb 11 19:27:50 2015

Date: Fri, 13 Feb 2015 19:27:50 +0530

Subject: Hi there!

User—Agent: Heirloom mailx 12.5 6/20/10

Content—Type: text/plain; charset=us—ascii

From: e00000@Qarm (Dummy User)

Status: RO

Hi

(...

Sending mail to someone is straightforward:

$ mail userY

[or within mail, ’'m userY ’]
Subject: Just to say hi!

[Now type in the text of the letter
on as many lines as you like ...

Unix One (2017-01-25 21:04) 27

To finish , type a Ctrl—d on a new line]
Ctrl—d

EOT
?

The Ctrl-d signals the EOT (end of text).

For practice, send mails to yourself. (It is not as odd as it may sound - it’s a handy way of
taking notes.)

There are other ways of sending mail — you can send a previously prepared letter, you can
mail to a number of people all at once, and you may be even able to send mail to people on
other machines. In this week’s assignment you will learn more about these things.

Note that the simple mail program we have in the Raspberry is a full featured with a rich
set of encryption like SMIME, SSL, SMTP-Auth, etc. Which are beyond this course. Here
you can demonstrate that the common “signature” attachment works by creating a file called
.signature (note the dot as the first character) in your home directory.

5.3.1 Command line calender, only for freaks

The original calendar program cal is ‘read only”, you can not enter your appointments in to
it. Such a calendar program is included in the Raspberry, called pal.

See how you could maintain your appointments in pal. This is only for the freaks. ;)

5.4 Assignment for the week

There are two time slots reserved for the assignment: see the on-line platform for details.

This assignment is fun, only if there are many users logged in at the same time. So, be there!
This assignment is open to all who have collected their account in assignment 1, irrespective
whether you passed the other assignments.

Please note that, you might need some “training” before the fun begins. So do a rehearsal
before the session.

During the assignment you will be collecting the data to be submitted in a text file and will
mail the file to user e00000. To do that you need to know few things which we haven’t covered
yet. Here they are, without explanations:

e When you execute a command, you can record its output by directing its output:

$ command > file

e To add more outputs to the same file you direct the output with two arrows, otherwise
it will be overwritten:

$ command >> file

e You can mail a file to another user by reading it as input to mail:

28 Unix One (2017-01-25 21:04)

$ mail userX —s Subject < file

At this time, just use a one-word subject!

Except otherwise stated, add the outputs of the steps below to a file called ’evidence’:
Step 1: Print the system date.

Step 2: Print 'who am i’.

Step 3: Record the 'who’ and 'what’ of the others who are logged in.

Step 4: Get the last 5 logins in to the system

Step 5: Find out when the system was last rebooted

Step 6: Create your own .project file

Step 7. Finger a couple of users and record one with a .project file.

Step 8: Send a couple of 'write’ messages to others. (This one you can not record)
Step 9: ’talk’ with sombody. (This too you can not record)

Step 10: Read your mail. There will be a mail from e00000. Reply to it! (If you delete the
message by mistake, you can just write a new mail.)

Step 11: Mail the your recording of steps 1 - 7 to e00000.

Addition: You need to ”submit” in the assignment tool with a short note like ”I have sent
the mail to e00000”, as explained the Announcement forum.

Summary

In this week you’ve learnt:

That the who and w (what) commands tell you who is logged in

that last and finger commands tells you about off-line users, and to make use of
.project and .plan files

e to ’'write’ and ’'talk’ to others

to use the built in postal system ’mail’

Unix One (2017-01-25 21:04) 29

6 Text editors

The aim of this week is

e to understand the concept of modal editor

e to learn the basics of the single-key commands in the original series of Unix text editors
ed, vi, etc.

An editor is application software, in which you create and modify documents. In a text editor
you create and modify text documents. Not only plain text but also program source code or
HTML and other mark-up source and many other files are text in its wider sense as human
readable and editable files.

There are a large number of terminal based text editors in Unix. They fall in to four main
categories according to their user interface. In a GUI based editors the seperatation between
text input and and control commands like font, alignment, etc. are clearly seperated through
the tools available in the GUI. For text input there is a seperate area. Once you click on
it, the editor knows where the text input that follows should flow. In the terminal you dont
have this clear seperation. One has to invent a method of seperating control input from the
text input.

In terminal based text editors there are basically four ways of achieving this:

e The original ed and its successors vi, ViM, etc.

Here simple keystrokes are used as control commands. To diffentiate them from text
input, you change the mode of the editor. This is not much different from a paint
program: if you select the brush, dragging mouse will paint something — if you’ve
selected the eraser, the same movement will erase!

e Emacs (edit macros editor) and its derivatives

All control commands are entered by Ctrl or Alt key combinations.

e joe (Joe’s Own Editor)

Also uses the Ctrl key to enter control commands. But their arrangment is different
from Emacs. Joe follows the pioneering wordprocessor WordStar.

e pico, nano

Designed specifically for the PC keyboard making use of its special keys for movement
like the arrow keys, page-up/down, etc. These editors follow the arrangement which
one finds in the Windows Notepad or in the pine mail reader. These editors are the
most natural for the Windows user. They use only a few control keys, which are always
displayed at the bottom of the screen.

We are going to look at the first category only, the ed-vi line. The main reason for chosing
this is that their control keys have a language of their own, which appear in many other
places in Unix. Added to that vi is found in almost any Unix variation.

30 Unix One (2017-01-25 21:04)

6.1 The original text editor ’ed’

ed was one of the first end-user programs hosted on Unix and has been there ever since. Due
to its simplicity the programm is so small, only 47 kB in todays x86 Linux, that it doesn’t
cost any space.

The interface is archaic in the sense that ed is a line editor - an editor in which each editing
command applies to one or more complete lines of text designated by the user. Let us
illustrate this with an example. This is how you create a file in ed:

$ ed
a
Great fleas have little fleas
upon their backs to bite ’em,
And little fleas have lesser fleas ,
and so ad infinitum .

And the great fleas themselves, in turn,
have greater fleas to go on;

While these again have greate still ,
and greater still , and so on.

W poem
263
q

ed starts with its own buffer, if no file name is mentioned. In the example the command ’a’
(append) instructed the editor to interprets the next keystrokes as text. One says that the
editor changed from the command mode to input mode. To return to command mode, one
needs to enter a line with ’.” as its only content. (Which is not written to the buffer.)

The command 'w file’ (write) writes the buffer to the file. Its output says that 'poem’ is
263 bytes long, which you can verify by counting characters or with 'we’ (word count):

$ wc poem
9 46 263 poem

Let us say, now we want to change the word ’little’ somewhere in the first stanza to ’small’.
We don’t remember the exact line, so we need to print the full stanza, then change to the
correct line and to do a search and replace. Finally take a quick look at the line, save the file
and quit.

$ ed poem

263

1.4p

Great fleas have little fleas
upon their backs to bite ’em,

And little fleas have lesser fleas,
and so ad infinitum .

3p

And little fleas have lesser fleas ,

Unix One (2017-01-25 21:04) 31

s/little /small/

p

And small fleas have lesser fleas ,
w

262

q

As we know ’a’ appends text. Let’s say, we want to add the chorus between to two stanzas.
This is how it would go:

$ ed poem
262
op

<— empty line
a
[Chorus |

<— empty line
5,7p

<— empty line
[Chorus |

<— empty line
w
272

6.2 ’Vi’, the visual editor

The vi, which now has cult status, is a natural extension of ed taking it to from its single line
operatio to full screen. In ed the command ’a’ switched it from the command mode to the
input mode. vi is similar. In addition to ’a’ (append after the cursor) there are a couple of
more commands to switch to input mode. For example 'i’ (inserts at the cursor) does exactly
what it says.

In ed ’.” returned the editor to command mode — in vi it is the ’Esc’ key.

Since Vi is a screen editor, it needs more keys to move the cursor around. The standard is h
(left), j (down), k (up) and 1 (right). You’ll realize that you operate those keys with the the
three pointing fingers of your right hand! In todays PC keyboards the arrow keys react as
expected. But there are a whole lot of movements which you can not get from those special
keys.

In addition there is a series of delete commands: 'x’ (delete character under the cursor), 'dd’
(delete line).

The command 'u’ (undo) does what it says.

Right now, it is more important to understand the philosophy of vi. For that we limit our
command vocabulary to: a, i, Esc, h, j, k, I, x, X, dd and u. You can practice them in this
week’s assignment.

32 Unix One (2017-01-25 21:04)

6.3 Assignment for the week

(see Assignment Week 6 in Moodle)

Summary

e You know why the characters in the keyboard get two meaning when you are in a
terminal based text editor.

e You have learned the commands a, p, q, s and w in ed.

e You have learned the basic use of the following commands in Vi: a, i, Esc, h, j, k, 1, x,

X, dd and u.

Unix One (2017-01-25 21:04) 33

Appendix

Course summary

o Week 1.

— You can recognize a Unix terminal and a Unix shell
— You can log in to a remote Unix machine through terminal emulation, change
password and close the session.

o Week 2.

— You know the commands date, cal, hostname, uname

— You know what an environment variable is and some examples like OSTYPE,
HOSTNAME, HOSTTYPE, SHELL and TERM. You can querry their values with
echo.

— You know that the size of terminal is measured by columns x lines, querry a
terminal with resize and that the standard value is 80x24.

o Week 3.

— You know how to refer to the Unix manual pages through man

— You know how to refer the GNU Info system through info

— You know the make use of the —help option

— You know to querry the comman shell commands with help

— That most shells make use of the Tab-key to auto-complete commands

— Most shells keeps the previous commands in a buffer and you can turn through it
by Up- and Down-arrows

o Week 4.

— You have a picture of the hierarchial file structure of Unix

— You remember Is, od, cat, cp, mv, rm, pwd, cd, mkdir and rmdir commands

Resources

e Brian W. Kernighan, Rob Pike: The UNIX Programming Environment, Prentice-Hall
1984. Tenth Indian reprint 1996. ISBN-81-2030499-3
http://cm.bell-labs.com/cm/cs/upe/

From the pioneers of Unix and C, still an excellent introduction for the engineering

student. Its first chapter "Unix for Beginners’ is the basis for this course..

e NIIT: ”Basic Linux (edited) [Monograph| / NIIT”. Engineering Library SR 004.45.9
N33, Class no. LEN 00445.9 N33, Acc. No. 643856.
http://www.lib.pdn.ac.lk/scripts/AfWilng.d117Details?action=0&site=0&br1lk=1309845

This course borrowed heavily from the above monograph.

34 Unix One (2017-01-25 21:04)

http://cm.bell-labs.com/cm/cs/upe/
http://www.lib.pdn.ac.lk/scripts/AfWiInq.dll?Details?action=0&site=0&brlk=1309845

e "LFS101x. Introduction to Linux”,
https://www.edx.org/course/introduction-linux-linuxfoundationx-1fs101x-2

This MOOC (Massive Open Online Course) conducted by the Linux Foundation gave
some ideas and inspiration for this course.

Unix One (2017-01-25 21:04) 35

https://www.edx.org/course/introduction-linux-linuxfoundationx-lfs101x-2

